Overview

Inductive Logic Programming (ILP) is a subfield of machine learning, which relies on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining.

The ILP conference series, started in 1991, is the premier international forum for learning from structured or semi-structured relational data. Originally focusing on the induction of logic programs, over the years it has expanded its research horizon significantly and welcomes contributions to all aspects of learning in logic, multi-relational data mining, statistical relational learning, graph and tree mining, learning in other (non-propositional) logic-based knowledge representation frameworks, exploring intersections to statistical learning and other probabilistic approaches.

Latest News

  • October 19th 2017 - the Call for Papers for the Journal Track is online.

Venue

Silver