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Abstract. Significant research has been conducted in recent years to extend In-

ductive Logic Programming (ILP) methods to induce Answer Set Programs (ASP).

These methods perform an exhaustive search for the correct hypothesis by en-

coding an ILP problem instance as an ASP program. Exhaustive search, however,

results in loss of scalability. In addition, the language bias employed in these

methods is overly restrictive too. In this paper we extend our previous work on

learning stratified answer set programs that have a single stable model to learn-

ing arbitrary (i.e., non-stratified) ones with multiple stable models. Our extended

algorithm is a greedy FOIL-like algorithm, capable of inducing non-monotonic

logic programs, examples of which includes programs for combinatorial prob-

lems such as graph coloring and N-queens. To the best of our knowledge, this is

the first heuristic-based ILP algorithm to induce answer set programs with multi-

ple stable models.

Keywords: Inductive Logic Programming , Machine Learning , Negation as

Failure , Answer Set Programming

1 Introduction

Statistical machine learning methods produce models that are not comprehensible for

humans because they are algebraic solutions to optimization problems such as risk min-

imization or data likelihood maximization. These methods do not produce any intuitive

description of the learned model. Lack of intuitive descriptions makes it hard for users

to understand and verify the underlying rules that govern the model. Also, these meth-

ods cannot produce a justification for a prediction they compute for a new data sample.

Additionally, if prior knowledge (background knowledge) is extended in these methods,

then the entire model needs to be re-learned. Finally, no distinction is made between ex-

ceptions and noisy data in these methods.

Inductive Logic Programming [11], however, is one technique where the learned

model is in the form of logic programming rules (Horn clauses) that are comprehen-

sible to humans. It allows the background knowledge to be incrementally extended

without requiring the entire model to be re-learned. Meanwhile, the comprehensibility

of symbolic rules makes it easier for users to understand and verify induced models and

even edit them.

ILP learns theories in the form of Horn clause logic programs. Extending Horn

clauses with negation as failure (NAF) results in more powerful applications becom-



ing possible as inferences can be made even in absence of information. This exten-

sion of Horn clauses with NAF where the meaning is computed using the stable model

semantics [6]—called Answer Set Programming1—has many powerful applications.

Generalizing ILP to learning answer set programs also makes ILP more powerful. For

a complete discussion on the necessity of NAF in ILP, we refer the reader to [17].

Once NAF semantics is allowed into ILP systems, they should be able to deal with

multiple stable models which arise due to presence of mutually recursive rules involving

negation (called even cycles) [6] such as:

p :- not q.

q :- not p.

XHAIL [16], ASPAL [2], ILASP [8] are among the recently emerged systems capa-

ble of learning non-monotonic logic programs. However, they all resort to an exhaustive

search for the hypothesis. The exhaustive search is not scalable on practical datasets.

For instance, (all versions of) ILASP training procedure times-out after couple of hours

on “Moral Reasoner” a dataset from the UCI repository. This is a small dataset contain-

ing roughly 200 examples and 50 candidate predicates in language bias.

In contrast, traditional ILP systems (that only learn Horn clauses), use heuristics to

guide their search. Use of heuristics allows them to avoid an exhaustive search. These

systems usually start with the most general clauses and then specialize them. They are

better suited for large-scale data-sets with noise, since the search can be easily guided

by heuristics. FOIL [15] is a representative of such algorithms. However, handling nega-

tion in FOIL is somewhat problematic as we discuss in [20]. Also, FOIL cannot handle

background knowledge with multiple stable models, nor it can induce answer set pro-

grams.

Recently we developed an algorithm called FOLD [20] to automate inductive learn-

ing of default theories represented as stratified answer set programs. FOLD (First Order

Learner of Default rules) extends the FOIL algorithm and is able to learn answer set

programs that represent the underlying knowledge very succinctly. However, FOLD is

only limited to dealing with stratified answer set programs, i.e., mutually recursive rules

through negation are not allowed in the background knowledge or the hypothesis. Thus,

FOLD is incapable of handling cases where the background knowledge or the hypothe-

sis admits multiple stable models. In this paper, we extend the FOLD algorithm to allow

both the background knowledge and the hypothesis to have multiple stable models. The

extended FOLD algorithm—called the XFOLD algorithm—is much more general than

previously proposed methods.

This paper makes the following novel contributions: First, it extends FOLD with

non-observation learning capability (Section 3). Then it presents the XFOLD algorithm,

an extension of our previous FOLD algorithm, that can handle background knowledge

with multiple stable models as well as allow inducing of hypotheses that have multiple

stable models (Section 4). To the best of our knowledge, XFOLD is the first heuristic

based algorithm to induce such hypotheses. The XFOLD algorithm can learn ASP pro-

grams to solve combinatorial problems such as graph-coloring and N-queens. Because

1 We use the term answer set programming in a generic sense to refer to normal logic programs,

i.e., logic programs extended with NAF, whose semantics is given in terms of stable models

[5].



the XFOLD algorithm is based on heuristic search, it is also scalable. Lack of scala-

bility is a major problem in previous approaches. We assume that the reader is familiar

with answer set programming and stable model semantics. The book by Gelfond and

Kahl [5] is a good source of background material.

2 Background

The FOLD algorithm [20] which is an extension of FOIL [15], learns a concept in

terms of a default and possibly multiple exceptions (and exceptions to exceptions, and

so on). FOLD tries first to learn the default by specializing a general rule of the form

{target(V1, ...,Vn) :- true.} with positive literals. As in FOIL, each specialization

must rule out some already covered negative examples without decreasing the number

of positive examples covered significantly. Unlike FOIL, no negative literal is used at

this stage. Once the heuristic score (i.e., information gain) becomes zero, this process

stops. At this point, if any negative example is still covered, they must be either noisy

data or exceptions to the current hypothesis. Exceptions could be learned by swapping

the current positive and negative examples, then calling the same algorithm recursively.

As a result of this recursive process, we can learn exceptions to exceptions, and so on.

The FOLD ILP problem of learning a target predicate is formally defined as follows:

Given

1. a background theory B, in the form of an extended logic program, i.e., clauses of

the form h← l1, ..., lm, not lm+1, ..., not ln, where l1, ..., ln are positive literals and

not denotes negation-as-failure (NAF) and B has no even cycle

2. two disjoint sets of ground target predicates E+,E− known as positive and negative

examples respectively

3. a hypothesis language of function free predicates L, and a refinement operator ρ

under θ − subsumption [14] that would disallow even cycles.

Find a set of clauses H such that:

– ∀e ∈ E+, B∪H |= e

– ∀e ∈ E−, B∪H 6|= e

– B and H are consistent.

In this paper, we extend the FOLD algorithm to relax all three preconditions stated

above so that: (i) The background knowledge B can potentially have more than one

stable model (section 4); (ii) Examples and target predicate could be different (Section

3); (iii) The induced hypotheses can have cycles through negation. (Section 4)

3 Non-Observation Predicate Learning in FOLD

In usual machine learning setting of “Observation Predicate Learning” (OPL), examples

and hypotheses define the same predicate. In contrast, non-OPL setting allows to have

examples other than the ground target predicate. Non-OPL setting is natural for many

problems [13]. Therefore, a natural extension of FOLD would be to include non-OPL



setting. Intuitively, non-OPL requires to obtain how each non-target example impacts

the correct hypothesis in terms of target ground atoms. The following example shows

how a non-target ground predicate could be expressed in terms of positive and negative

examples of the target predicate.

Example 1 Consider the following Background knowledge. Given the positive example

set E+ = {p(a),r(c)},E− = {p(d)}, we want to learn the target r(X).

(1) p(X) :- s(X), not r(X). (3) q(a,b).

(2) s(X) :- q(X,Y), r(Y). (4) s(d).

Since B∪H must imply p(a), from rule (1) we get s(a) must hold and r(a) should not.

For s(a) to hold, from rule (2) we get q(a,Y ),r(Y ) must hold. Such Y indeed exists from

fact (3). Therefore, r(b) must hold too. p(a) requires r(b) and not r(a). Therefore, p(a)
can be replaced by new examples, i.e., r(b) a new positive example, and r(a), a new

negative example. The impact of p(d) as a negative example is to force r(d) not to hold,

because, from (4) we get s(d) holds, therefore, r(d) must not. Hence, r(d) is a new

negative example and replaces p(d).

The computation performed in Example 1 to replace non-target examples with target ex-

amples is realized using abduction in a goal-directed answer set programming system

called s(ASP) [10, 7]. The s(ASP) system takes an answer set program P and a query

goal Q as inputs and enumerates all answer sets that contain the propositions/predicates

in Q. This enumeration employs co-inductive SLD resolution to systematically compute

elements of the greatest fixed point (GFP) of a program via backtracking. The advantage

of s(ASP) over other answer set solvers is that it would lift the restriction that answer

set programs must be finitely groundable. In order to process a query Q, s(ASP) would

produce a set called the “partial answer set” containing the elements that are necessary

to establish Q. The s(ASP) system also allows a query to run abductively, by first defin-

ing a set of predicates as abducible. By doing so, if success of a query Q depends on

assuming a fact that belongs to the set of abducibles, Q abductively succeeds and the

abducibles are added to the set of partial answer set associated with Q.

Algorithm 1 shows the required steps in order to solve a non-OPL ILP problem us-

ing FOLD. In case of Example 1, p(a) is a non-target example. By running s(ASP) and

defining #abducible r(X), the following partial answer set is produced by s(ASP) on

the query ?- p(a).:

{p(a), q(a,b), r(b), s(a), not r(a)}

r(b) and r(a) are added to the set of positive and negative examples, respectively. It

should be noted that the above set of predicates are relevant to establish the query ?-

p(a). In practice, this is a small subset of the original stable model. The fact that s(ASP)

does not ground the answer set program, makes this approach scalable comparing to

SAT based answer set solvers.

4 Induction of Answer Set Programs with Multiple Stable Models

In this section we extend our FOLD algorithm to learn normal logic programs that

potentially have multiple stable models. The significance of Answer Set Programming



Algorithm 1 Non-OPL Version of FOLD Algorithm

Input: target,B,E+,E−

Output: Hypothesis H

1: abduced+,abduced− = { }
2: Let Q be the query: ?−E+, not E−

3: Run Q on s(ASP) 〈B,#abducibles = {target}〉 ⊲ Run s(ASP) with B as input

4: Let P = partial answer set associated with Q

5: for each p ∈ P s.t pred(p) == target do

6: if sign(p) == + then

7: abduced+← abduced+∪{p}
8: else

9: abduced−← abduced−∪{p}
10: end if

11: end for

12: E+← E+∪ abduced+

13: E−← E−∪ abduced−

14: Run FOLD〈B,E+,E−, target〉

paradigm is that it provides a declarative semantics under which each stable model

is associated with one (alternative) solution to the problem described by the program.

Typical problems of this kind are combinatorial problems, e.g., graph coloring and N-

queens. In graph coloring, one should find different ways of coloring nodes of a graph

without coloring two nodes connected by an edge with the same color. N-queen is the

problem of placing N queens in a chessboard of size N×N so that no two queens attack

each other.

In order to inductively learn such programs, the ILP problem definition needs to

be revisited. In the new scenario, positive examples e ∈ E+, may not hold in every

model. Therefore, the ILP problem described in the background section would only

allow learning of predicates that hold in all answer sets. This is too restrictive. Brave

induction [18], in contrast, allows examples to hold only in some stable models of B∪H.

However, as stated in [8], and we will show using examples, this is not enough when

it comes to learning global constraints (i.e, rules with empty head)2. Learning global

constraints is essential because certain combinations may have to be excluded from all

answer sets.

When B∪H has multiple stable models, there will be some instances of target pred-

icate that would hold in all, none, or some of the stable models. Brave induction is not

able to express situations in which a predicate should hold in all or none of the stable

models. An example is a graph in which node 1 is colored red. In such a case, none

of node 1’s neighbors should be colored red. If node 1 happens to have node 2 as a

neighbor, brave induction is not able to express the fact that if the atom red(1) appears

2 Recall that in answer set programming, a constraint is expressed as a headless rule of the form

:- B.

which states that B must be false. A headless rule is really a short-form of rules of the form

(called odd loops over negation [5]):

p :- B, not p.



in any stable model of B∪H, red(2) should not. In [8], the authors propose a new

paradigm called learning from partial answer sets that overcomes these limitations. We

also adopt this paradigm in this work. Next, we present our XFOLD algorithm.

Definition 1. A partial interpretation E is a pair E = 〈E inc,Eexc〉 of sets of ground

atoms called inclusions and exclusions, respectively. Let A ∈ AS(B∪H) denote a stable

model of B∪H. A extends 〈E inc,Eexc〉 if and only if (E inc ⊆ A)∧ (Eexc∩ A = /0).

Example 2 Consider the following background knowledge about a group of friends

some of whom are in conflict with others. The individuals in conflict will not attend a

party together. Also, they cannot attend a party if they work at the time the party is held.

We want our ILP algorithm to discover the rule(s) that will determine who will go to

the party based on the set of partial interpretations provided.

B : conflict(X,Y) :- person(X), person(Y), conflict(Y,X).

works(X) :- person(X), not off(X).

off(X) :- person(X), not works(X).

person(p1). person(p2). conflict(p1,p4).

person(p3). person(p4). person(p5). conflict(p2,p3).

Some of the partial interpretations are as follows:

The predicates g,w,o abbreviate goesToParty, works, off respectively:

E1 = {〈g(p1),g(p2),o(p1),o(p2),w(p3),o(p4),w(p5)〉,〈g(p3),g(p4),g(p5)〉}
E2 = {〈g(p3),g(p4),g(p5),o(p1),o(p2),o(p3),o(p4),o(p5)〉,〈g(p1),g(p2)〉}
E3 = {〈g(p1),g(p3),g(p5),o(p1),o(p2),o(p3),w(p4),o(p5)〉,〈g(p2),g(p4)〉}
E4 = {〈g(p2),g(p5),g(p5),w(p1),o(p2),w(p3),w(p4),o(p5)〉,〈g(p1),g(p3),g(p4)〉}

In the above example, each Ei for i = 1,2,3,4 is a partial interpretation and should be

extended by at least one stable model of B∪H for a learned hypothesis H. For instance,

let’s consider the hypothesis H1 = {goesToParty(X) :- off(X)} for learning the

target predicate goesToParty(X). By plugging the background knowledge, the non-

target predicates in E1, and the hypothesis H1 into an ASP solver (CLASP [4] in our

case), the stable model returned by the solver would contain the following:

{goesToParty(p1),goesToParty(p2),goesToParty(p4)}.
It does not extend E1. Although, E inc

1 ⊆ AS(B∪H1) but AS(B∪H1)∩Eexc
1 6= /0. It should

be noted that non-target predicates are treated as background knowledge upon calling

ASP solver to compute the stable model of B∪H.

Definition 2. An XFOLD problem is defined as a tuple P= 〈B,L,E+,E−,T 〉. B is a an-

swer set program with potentially multiple stable models called the background knowl-

edge. L is the language-bias such that L = 〈Mh,Mb〉, where Mh (resp. Mb) are called

the head (resp. body) mode declarations [12].

Each mode declaration mh ∈ Mh (resp. mb ∈ Mb) is a literal whose abstracted argu-

ments are either variable v or constant c. Type of a variable is a predicate defined in

B. The domain of each constant should be defined separately. Hypothesis h is said to

be compatible with a mode declaration m if each instance of variable in m is replaced

by a variable, and every constant takes a value from the associated domain. The set of

candidate predicates in the greedy search algorithm are selected from Mb∪Mh.



XFOLD is extended with mode declaration to make sure that every clause generated

is safe for the ASP solver CLASP as it needs to ground the program. To obtain a finite

grounded program, CLASP must ensure that every variable is safe. A variable in head is

safe if it occurs in a positive literal of body. XFOLD adds predicates required to ensure

safety, but to keep our examples simple, we omit safety predicates in the paper. E+ and

E− are sets of partial interpretations called positive and negative examples, respectively.

T ∈Mh is the target predicate’s name. Each XFOLD run learns a single target predicate.

A hypothesis h ∈ L is an inductive solution of T if and only if:

1. ∀e+ ∈ E+∃A ∈ AS(B∪H) such that A extends e+

2. ∀e− ∈ E− 6 ∃A ∈ AS(B∪H) such that A extends e−

The above definition adopted from [8] subsumes brave and cautious induction se-

mantics [18]. Positive examples should be extended by at least one stable model of

B∪H (brave induction). In contrast, no stable model of B∪H extends negative exam-

ples (cautious induction). The generate and test problems such as N-queen and graph

coloring could be induced using our XFOLD algorithm. It suffices to use positive ex-

amples for learning the generate part and negative examples for learning the test part.

Figure 1 represents the input to the XFOLD algorithm for learning an answer set

program for graph coloring. Every positive example states if a node is colored red, then

that node cannot be painted blue or green. Likewise for blue and green. However, this

is not enough to learn the constraint that two nodes connected by an edge cannot have

the same color. To learn this constraint, negative examples are needed. For instance,

E−1 , states that if any stable model of B∪H contains {red(1)}, in order not to extend

E−1 , it should contain {not red(2)} or equivalently, it should not contain {red(2)}.
Intuitively, XFOLD is similar to FOLD and FOIL: To specialize a clause cl, for every

Fig. 1: Partial interpretations as examples in graph coloring problem

positive example e ∈ E+, the background knowledge B, all non-target predicates in einc

and cl are passed to the ASP solver as inputs. The resulting answer set is compared with

the target predicates in einc and eexc to compute a partial score. Next, by summing up all

partial scores, total score of that clause is computed. Among all candidate clauses, the

one with highest total score is selected. Once for all e ∈ E+ no target predicate in eexc

is covered, the internal loop finishes and the discovered rule(s) are added to the learned

theory. Just like FOLD, if no literal with positive score exists, swapping occurs on

each remaining partial interpretation and the XFOLD algorithm is recursively called.

In this case, instead of introducing abnormality predicates, the negation symbol, ”-”,



Algorithm 2 The XFOLD Algorithm

Input: target, B, {e = (einc,eexc)|e ∈ E+)}
Output: Hypothesis H

function SPECIALIZE(cl,B,E+) ⊲ Other functions remain unchanged as in FOLD

while ∃e ∈ E+ such that eexc! = /0 do

for each c ∈ ρ(cl) do ⊲ FOIL inner loop (refinement)

for each ei ∈ E+ do

compute partial score[i][c] ⊲ partial score for each clause

end for

total score[c] = ∑ei∈E+ partial score[i][c]
end for

Let c best, max score, be the clause with the highest score and its associated score

if max score > 0 then

cl← c best

H← H ∪{cl}
else

E swapped+ = Swap(E+)

XFold(B,E swapped+,−target)

end if

update E+

end while

end function

is prefixed to the current target predicate to indicate that the algorithm is now trying

to learn the negation of concept being learned. It should also be noted that swapping

examples is performed slightly differently due to the existence of partial interpretations.

For each e ∈ E+ the following operations are performed upon swapping:

1. ∀t ∈ einc, where t is an old target atom already covered and removed, t is restored

2. ∀t ∈ einc, where t is an old target atom, −t is added to eexc

3. ∀t ∈ eexc, where t is an old target atom, −t is added to einc

4. T ←−T . (Target predicate T now becomes its negation, -T)

Figure 2 shows execution of XFOLD on Example 2. At the end of first iteration, the

predicate off(X) gets the highest score. E4 will be removed as it is already covered

by the current hypothesis. In the second iteration, all candidate literals fail to get a

positive score. Therefore, swapping of positive and negative examples occurs and al-

gorithm tries to learn the predicate -goesToParty(X). Since the new target predicate

is -goesToParty(X), all ground atoms of goesToParty in E inc are restored back.

The old target atoms in Eexc are transformed to negated version and become members

of E inc. In Figure 2, after one iteration E4 is removed because all target atoms in E inc

are already covered and targets atoms in Eexc are already excluded. After swapping,

XFOLD is recursively called to learn -goesToParty. After 2 iterations, all examples

are covered and the algorithm terminates.

In Example 2, we haven’t introduced any explicit negative example. Nevertheless,

the algorithm was able to successfully find the cases in which the original target pred-

icate does not hold (via learning -goesToParty(X) predicate). In general, it is not



Fig. 2: Trace of XFOLD execution on the Party Example

always feasible for the algorithm to figure out prohibited patterns without getting to see

a very large number of positive examples.

5 Application: Combinatorial Problems

A well-known methodology for declarative problem solving is the generate and test

methodology, whereby possible solutions to a problem are generated first, and then

non-solutions are eliminated by testing. In Answer Set Programming, the generate part

is encoded by enumerating the possibilities by introducing even cycles. The test part

is realized by having constraints that would eliminate answer sets that violate the test

conditions. ASP syntax allows rules of the form l{h1, ...,hk}u such that 0 ≤ l ≤ u ≤ k

and ∀i∈ [1,k], hi ∈ L, where L is the language bias. This syntactic sugar for combination

of even cycles and constraints is called choice rule in the literature [5].

ILASP [8] directly searches for choice rules by including them in the search space.

XFOLD, on the other hand, performs the search based on θ -subsumption [14] and hence

disallows search for choice rule hypotheses. Instead, it directly learns even cycles as

well as constraints. This is advantageous as it allows for more sophisticated and flexible

language bias.

It turns out that inducing the generate part in a combinatorial problem such as graph-

coloring requires an extra step compared to the FOLD algorithm. For instance, red(X)

predicate has the following clause:

red(X):- not blue(X), not green(X).



To enable XFOLD to induce such a rule, we adopted the “Mathews Correlation Coeffi-

cient” (MCC) [22] measure to perform the task of feature selection. MCC is calculated

as: MCC = T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

This measure takes into account all the four terms TP (true positive), TN (true neg-

ative), FP (false positive) and FN (false negative) in the confusion matrix and is able

to fairly assess the quality of classification even when the ratio of positive tuples to the

negative tuples is not close to 1. The MCC values range from -1 to +1. A coefficient

of +1 represents a perfect classification, 0 represents a classification that is no better

than a random classifier, and -1 indicates total disagreement between the predicted and

the actual labels. MCC cannot replace XFOLD heuristic score, i.e, information gain,

because the latter tries to maximize the coverage of positive examples, while the for-

mer only maximally discriminates between the positives and negatives. Nevertheless,

for the purpose of feature extraction among the negated literals which are disallowed

in XFOLD algorithm, MCC can be applied quite effectively. For that matter, before

running XFOLD algorithm, the MCC score of all candidate literals are computed. If a

predicate scores “close” to +1, the predicate itself is added to the language bias. If it

scores “close” to -1, its negation is added to the language bias. For example, in case

of learning red(X), after running the feature extraction on the graph given in Figure

1, XFOLD computes the scores -0.7, -0.5 for green(X) and blue(X), respectively.

Therefore, {not green(X),not blue(X)} are appended to the list of candidate pred-

icates. Now, after running the XFOLD algorithm, after two iterations of the inner loop,

it would produce the following rule:

red(X) :- not green(X), not blue(X).

Corresponding rules for green(X) and blue(X) are learned in a similar manner. This

essentially takes care of the generate part of the combinatorial algorithm. In order to

learn the test part for graph coloring, we need the negative examples shown in Figure

1. It should be noted that in order to learn a constraint, we first learn a new target predi-

cate which is the negation of the original one. Then we shift the negated predicate from

the head to the body inverting its sign in the process. That is, we first learn a clause of

the form {-T :- b1, b2 . . . bn.} which is then transformed into the following con-

straint: {:- b1, b2 . . . bn, T.} Thus, the following steps should be taken to learn

constraints from negative examples:

1. Add rule(s) induced for generate part to B.

2. ∀e+ ∈ E+,e− ∈ E−, if e−inc ⊆ e+inc:

– if e−exc is of the form (not p(V1, ...Vm)) then e+inc← e+inc∪{−p(V1, ...Vm)}
– else e+exc← e+exc∪{−p(V1, ...Vm)}

3. compute the contrapositive form of the rule(s) learned in generate part and remove

the body predicates from the list of candidate predicates

4. run XFOLD to learn p

5. shift -p from the head to the body for each rule returned by XFOLD

The contrapositive form of a clause is computed by negating the head and applying the

De Morgan’s law to the body. The resulting disjunctions are resolved by separating them



into new clauses. For instance, the contrapositive of {red(X) :- not green(X),

not blue(X)} is obtained as follows:

{-red(X) :- green(X)},{-red(X) :- blue(X)}. Without step 3, XFOLD would

learn these trivial clauses. However, as soon as those trivial choices are removed from

search space, XFOLD algorithm comes up with the next best hypothesis which is as

follows: {-red(X) :- edge(X,Y), red(Y).} Shifting -red(X) to the body yields

the following constraint: :- red(X),edge(X,Y),red(Y). In graph coloring prob-

lem, Mh = {red(X), green(X), blue(X)}. Once similar examples for green(X)

and blue(X) are provided, XFOLD is able to learn the complete solution as shown

below:

red(X) :- not green(X), not blue(X).

green(X) :- not blue(X), not red(X).

blue(X) :- not green(X), not red(X).

:- red(X), edge(X,Y), red(Y).

:- blue(X), edge(X,Y), blue(Y).

:- green(X), edge(X,Y), green(Y).

Algorithm 3 shows how XFOLD induces a generate and test hypothesis.



Example 3 Learning an answer set program for the 4-queen problem. The following

items are assumed: Background knowledge B including predicates describing a 4× 4

board, rules describing different ways through which two queens attack each other and

examples of the following form:

B: attack r(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),C1! =C2, R1 = R2.

attack c(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),R1! = R2, C1 =C2.

attack d(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),R1! = R2,R1−C1 = R2−C2.

attack d(R1,C1,R2,C2):-q(R1,C1),q(R2,C2),R1! = R2,R1 +C1 = R2 +C2.

E: E+
1 = {〈q(2,1),q(4,2),q(1,3),q(3,4)〉,〈q(1,1),q(1,2), ...,q(4,4)〉}

...

E−1 = {〈q(2,1)〉,〈not q(2,2)〉}
E−2 = {〈q(2,1)〉,〈not q(2,3)〉}
E−3 = {〈q(4,2)〉,〈not q(1,2)〉}
E−4 = {〈q(4,2)〉,〈not q(2,3)〉}

As far as the generate part is concerned, XFOLD algorithm learns the following pro-

gram:

q(X,Y) :- not -q(X,Y).

-q(X,Y) :- not q(X,Y).

The predicate -q(X,Y) is introduced by XFOLD algorithm as a result of swapping

the examples and calling itself recursively. After computing the contrapositive form,

q(X,Y), -q(X,Y) are removed from the list of candidate predicates. Then based on

the examples provided in Example 3, XFOLD would learn the following rules:

-q(V1,V2) :- attack r(V1,V2,V3,V4).

-q(V1,V2) :- attack c(V1,V2,V3,V4).

-q(V1,V2) :- attack d(V1,V2,V3,V4).

After shifting the predicate -q(V1,V2) to the body, we get the following constraint:

:- q(V1,V2), attack r(V1,V2,V3,V4).

:- q(V1,V2), attack c(V1,V2,V3,V4).

:- q(V1,V2), attack d(V1,V2,V3,V4).

It should be noted that, since XFOLD is a sequential covering algorithm like FOIL,

it takes three iterations before it can cover all examples which in turn becomes three

constraints as shown above.

6 Experiments and Results

Table 1 reports the classification accuracy using 10-fold cross-validation and runtime

measurements of Aleph, FOLD and XFOLD on a number of UCI datasets [9] and com-

binatorial problems discussed in this paper. In [20] we compare our FOLD algorithm

with Aleph which is a state-of-the-art ILP system. However, Aleph [21] does not sup-

port multiple stable model ILP. Therefore, we can only compare our results with that of

ILASP. In case of UCI datasets, the “Size” column denotes the number of data samples,



whereas, in graph-coloring (N-queen) it denotes the number of nodes(board size) re-

spectively. We have also examined the application of statistical feature selection on the

performance of our XFOLD algorithm. We report a significant improvement due to the

application of a scalable feature-selection method, i.e., xgboost, prior to invoking the

learning algorithm. Exclusion of low ranked features and the use of negation-as-failure

results in a significant improvement over the accuracy of learned hypotheses.

“Extreme Gradient Boosting” (xgboost) [1] is a scalable and powerful ensemble

classifier based on decision trees that provides a feature importance score. Since, in

ILP we deal with propositions, it makes sense to discretize numeric features first using

MDL method [3]. In this method, for each numeric feature categories are defined such

that the overall information gain is maximized.

Next, a dataset that now contains only categorical features is propositionalized. That

is, every value belonging to the domain of a categorical feature turns into a new binary

feature. This is called one hot encoding. One hot encoding makes the feature selection

more fine grained. This is because, in this technique instead of measuring the contri-

bution of a feature as a whole, the importance of every value from the domain of that

feature is measured. Then the data set is fed into xgboost which ranks each binary fea-

ture based on its importance in the classification. From the xgboost’s output, the M

lower ranked features are filtered out of the XFOLD language bias. The optimal M

should be computed via cross-validation.

In small problems such as graph coloring, ILASP slightly outperforms our XFOLD

algorithm due to embedding the learning algorithm in the ASP solver engine. In a larger

data set such as Moral reasoner with 202 examples and 50 predicates, there are poten-

tially 350 different hypotheses to choose from. This is because, for each predicate it can

either be included positively, included negatively or excluded. In this case, ILASP times

out after couple of hours.

Accuracy (%) Running Time (s)

Dataset Size Aleph Fold XFold ILASP XFold ILASP

breast-cancer 286 70 82 88 — 4.1 timed-out

moral 202 96 96 100 — 4.8 timed-out

diabetes 768 73 86 89 — 27.2 timed-out

graph-coloring 4 — — 100 100 8 4.5

graph-coloring 8 — — 100 100 8.9 3.5

N-queen 4 × 4 — — 100 100 9.5 5

N-queen 8 × 8 — — 100 100 9.9 6.2

Table 1: XFold Evaluation on UCI benchmarks and Combinatorial Problems

7 Related Work

A survey of extending Horn clause based ILP to non-monotonic logics can be found

in [17]. “Stable ILP” [19] was the first effort to explore the expressiveness of back-

ground knowledge with multiple stable models. In [17], Sakama introduces algorithms

to induce a categorical logic program3 given the answer set of the background knowl-

edge and either positive or negative examples. Essentially, given a single answer set,

3 A categorical logic program is an answer set program with at most one stable model.



Sakama tries to induce a program that has that answer set as a stable model. In [18],

Sakama and Inoue extend their work to learn from multiple answer sets. They introduce

brave induction, where the learned hypothesis H is such that some of the answer sets

of B∪H cover the positive examples. The limitation of this work is that it accepts only

one positive example as a conjunction of atoms. It does not take into account negative

examples at all. Cautious induction, the counterpart of brave induction, is also too re-

stricted as it can only induce atoms in the intersection of all stable models. Thus, neither

brave induction nor cautious induction are able to express situations where something

should hold in all or none of the stable models. An example of this limitation arises in

the graph coloring problem where the following should hold in all answer sets: no two

neighboring nodes in a graph should be painted the same color.

ASPAL [2] is the first ILP system to learn answer set programs by encoding ILP

problems as ASP programs and having an ASP solver find the hypothesis. Its successor

ILASP [8], is a pioneering ILP system capable of inducing hypotheses expressed as

answer set programs too. ILASP defines a framework that subsumes brave/cautious in-

duction and allows much broader class of problems relating to learning answer set pro-

grams to be handled by ILP. However, the algorithm exhaustively searches the space of

possible clauses to find one that is consistent with all examples and background knowl-

edge. The Exhaustive search is a weaknesses that limits the applicability of ILASP to

many useful situations. Our research presented in this paper does not suffer from this

issue.

XHAIL [16] is another ILP system capable of learning non-monotonic logic pro-

grams. It heavily incorporates abductive logic programming to search for hypotheses.

It uses a similar language-bias as ILASP does, and thus suffers from the limitations

similar to ILASP. It also does not support the notion of inducing answer set programs

from partial answer sets.

8 Conclusion and Future Work
In this paper we presented the first heuristic-based algorithm to inductively learn normal

logic programs with multiple stable models. The advantage of this work over similar

ILP systems such as ILASP [8] is that unlike these systems, XFOLD does not per-

form an exhaustive search to discover the “best” hypothesis. XFOLD adopts a greedy

approach, guided by heuristics, that is scalable and noise resilient. We also showed

how our algorithm could be applied to induce declarative logic programs that follow

the generate and test paradigm for finding solutions to combinatorial problems such as

graph-coloring and N-queens.

There are two main avenues for future work: (i) handling large datasets using meth-

ods similar to QuickFoil [22]. In QuickFoil, all the operations of FOIL are performed

in a database engine. Such an implementation, along with pruning and query optimiza-

tion tricks can make the XFOLD training much faster; (ii) XFOLD learns function-free

answer set programs. We plan to investigate extending the language bias towards ac-

commodating functions.
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