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Abstract. Selection of appropriate background knowledge is critical
within the application of Inductive Logic Programming. Traditionally
such selection is entirely dependent on human beings, who provide prim-
itive predicates to be used by an ILP system for formulating hypotheses.
In this paper we consider issues relating to possible automatic selection
of background definitions from a large library of pre-existing predicates.
In particular, we consider the effect of the generality of background def-
initions on error. In our experiments we introduce randomly defined ex-
tensional background predicates with varying levels of generality and
measure the effects on omission and commission errors in the family re-
lation domain. Our results indicate increasing generality of background
predicates leads to a sharp increase in commission errors with a corre-
sponding rapid decrease in omission errors. In further work we aim to
investigate Meta-Interpretive Learning systems which order the selection
of background and invented predicates based on their generality.

1 Introduction

A key distinguishing feature of Inductive Logic Programming[3, 6], in terms
of Machine Learning, is the ability for users to provide learners with domain
knowledge. However, the selection of such background knowledge can be time-
consuming for users and also potentially error prone for the learning system.
Insufficient provision of background knowledge leads to the learner failing to
identify consistent hypotheses. Over-provision of background predicates leads to
excessive search and overfitting to the training data. In this paper we consider
a setting in which a large library of background predicates is made available.
Learning is assumed to consist of two phases: 1) selection of a minimal set of
background predicates B deemed relevant to the given examples E and 2) con-
struction and testing of a hypothesis H from B and E.

This paper is organised as follows. Section 2 describes related work on identi-
fying relevant features and background knowledge. In Section 3 we introduce the
Meta-Interpretive Learning (MIL) setting and the definition of generality used
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in the experiments. Section 4 describes experiments involving varying the gener-
ality of randomly generated extensional background predicates. Lastly, Section
5 provides conclusions and suggestions for further work.

2 Related work

Feature subset selection In statistical machine learning and data mining, rele-
vance is primarily discussed in the context of Feature (Subset) Selection (FSS)
[2], whereby a subset of the features in a dataset are selected for training. The
ultimate purpose of this selection is to minimise the dimensionality of the data
in order to increase performance and improve training times. This is typically
achieved by looking for correlations between features and the correct value of a
predicted variable, then selecting those features with the highest such correla-
tion, deemed to be the most relevant to the predicted variable. Additionally, it
is possible to look for correlations between relevant features in order to detect
and reduce redundancy.

Relevance selection in ILP In [7] Srinivasan conjectures that ordering back-
ground knowledge predicates according to their relevance to the learning task at
hand can improve performance, measured by predictive accuracy and training
time. The authors do not attempt a formal definition of ”relevance” and instead
enlist domain experts to provide a ”hand-crafted” partial ordering of background
predicates from two datasets, mutagenesis and carcinogenicity. The partial or-
derings selected this way are used to generate total orderings, of which one (of
only two in each case) is selected for each domain. An incremental procedure
is then described by which, during training, predicates are added to an initially
empty background set according to the selected total ordering. The results of this
”informed” training procedure are compared to a) a procedure using the entire
background knowledge at once and b) an incremental procedure that randomly
adds predicates to the background (ie without respecting the selected relevance
ordering).

3 Framework

MIL framework We assume a Meta-Interpretive Learning [5] setting in which
the learning algorithm is provided with Metarules M in the form of second-order
definite clauses, first-order Background Knowledge B consisting of definite clause
definitions and Examples E consisting of ground unit literals. Based on B and
E the learner generates a hypothesis H in the form of a definite program such
that M |= H and B,H |= E.

Generality Assume Qn to be the definition of a first-order predicate Q of arity
n. We define the generality of Qn as follows.

Definition 1. Generality of Qn. The generality of Qn is

g(Qn) = Pr(Q(xn)|random xn)
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4 Experiment results

In this section we present the results of experiments performed to determine the
effect of generality on Errors of Commission and Errors of Omission.

4.1 Materials

A Prolog program was written to generate a list of ground atoms for each back-
ground predicate Qn by including each possible atom in Qn with probability
g(Qn). The value of g(Qn) was assigned according to the following sequence of
generality classes.

〈0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0〉

Experiments were performed with Metagol [4, 5] as the learning system and
a small dataset of family relations as training data, including atoms of father/2
and mother/2 as background knowledge and positive and negative examples of
the ”grandfather” relation.

4.2 Methods

Each experiment consisted of ten steps, one for each generality class listed in
section 4.1. In each step a new background predicate was generated by the
program described in section 4.1, with a random string as a symbol and constants
taken from the Herbrand universe of the positive and negative examples of the
target concept. In each step, atoms from the Herbrand base of the generated
predicate were selected with probability equal to the corresponding generality
class, thus controlling the generality of background knowledge.

In each step, 1000 cycles of training and evaluation were performed and
the results of evaluation averaged over all cycles, to yield the error value for
the generality class corresponding to that step. Hypotheses in each cycle were
learned on a random sample of 2% of the positive examples and evaluated on the
remaining positive and all negative examples. Evaluation therefore amounted to
Monte Carlo cross-validation by random subsampling over the positive examples.

4.3 Results

The results shown in Figure 1 show that a) Errors of Commission increase and b)
Errors of Omission decrease, as the generality of background predicates increases.

5 Conclusions and further work

This paper initiates a discussion of the problems with learning from large and
possibly partially irrelevant background knowledge and presents some early re-
sults suggesting a relation between the validation error of hypotheses and the
generality of background predicates used to construct them.
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Fig. 1. Effect of varying the generality of randomly chosen background predicates on
a) commission and b) omission errors.

5.1 Discussion

Informally, the generality of a predicate represents the probability that it is true
for any atom chosen uniformly at random from its Herbrand base. A predicate
that is always true, given any set of arguments, is maximally general, whereas
one that is never true is minimally general. In the context of an ILP learn-
ing session a maximally general hypothesis would never be valid: although it
would accept every positive example, it would also accept all negative ones!
Conversely, a hypothesis with minimal generality would reject all positive exam-
ples, even though it would correctly reject all negative ones also. Further from
these extremes of generality, more general hypotheses would correctly accept
more positive examples but also incorrectly accept more negative examples and
vice-versa. This inverse relation between generality and the correct or incorrect
coverage of positive and negative examples, respectively, should manifest as an
out-of-sample rate of Errors of Commission increasing with generality. This ef-
fect should be the most evident in a cross-validation setting when training with
positive examples only: including negative training examples would cause some
overly-general hypotheses to be rejected as invalid during training, before they
can be evaluated on held-out data in a validation step.

The experiment results listed in section 4 are consistent with the above in-
tuition regarding generality, particularly in the case of positive-only training
examples. In figure 1 as the generality of hypotheses increases, more and more
negative examples are falsely accepted, increasing the Errors of Commission on
the out-of-sample data (which includes negative examples). At the same time,
fewer and fewer positive examples are falsely rejected, reducing the Errors of
Omission.

The relation between generality and both types of error is striking, but note
that in figure 1 the Errors of Omission are never very high whereas Errors of
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Commission essentially saturate. It’s possible that this difference in the magni-
tude of the two types of error is a result of the imbalance in the numbers of
positive vs. negative examples- there were only 6 positive examples of the target
concept, but 78 negative ones in the dataset, so there were more chances for
false positives than false negatives. Datasets with more balanced examples may
yield higher rates of Errors of Omission.

5.2 Future work

Our experimental results suggest that a valid hypothesis would have to be some-
where between minimum and maximum generality, but closer, indeed as close as
possible, to the minimum- in other words, sufficiently general to cover all positive
examples but not as general as to cover any negative examples. This intuition
suggests an ordering of the hypothesis space where the least general hypotheses
are visited before the most general ones. Combined with an Occamist bias, as
in Metagol’s iterative deepening search, whereby shorter hypotheses are visited
before longer ones, this would yield a procedure where the shortest, least general
hypotheses are examined earlier in the search. We are currently working on an
implementation of such a generality-ordered search facility for Metagol.

The question now naturally arises of how to measure the generality of a
hypothesis, in order to impose such an ordering. One way is of course to estimate
the generality of a hypothesis by sampling from its Herbrand base, but this
would require a costly step inserted into an already computationally expensive
learning procedure. A more attractive alternative is to calculate the generality of
a hypothesis from the generality of its literals, in other words, from the predicates
in the background knowledge-base. The generality of each background predicate
need only be determined once by sampling from its Herbrand base in a pre-
processing step, outside of any critical loops of the learning procedure. These
values can then be stored in memory and used for a closed-form calculation
during training. Additionally, background predicates can be ordered by their
generality to ensure that the least general ones are examined first during training.

But how to calculate the generality of a hypothesis? Fortunately, MIL im-
poses a strong language bias on learned hypotheses, in the form of second-order
metarules entailing hypotheses. Therefore, only a calculation for each metarule
clause is needed, rather than for arbitrary clause structures. The necessary cal-
culations can be reduced even further by concentrating on the Turing-complete
H2

2 class of hypotheses and only considering the two metarules that are known
to be sufficient to construct any hypothesis in this class, according to [1], the
Inverse and Chain metarules:

P (A,B)← Q(B,A) (Inverse)
P (A,B)← Q(A,C), R(C,B) (Chain)

Suppose that a hypothesis, H consists of a single clause, of the Inverse
metarule. In that case, the generality of H must be the generality of its sin-
gle body literal. The generality of a clause of the Chain metarule is harder to
define. We are directing our future work towards this latter definition.
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