
Using Reachability Properties of Logic Program
for Revising Biological Models

Xinwei Chai1,2, Tony Ribeiro1,2, Morgan Magnin1,2, Olivier Roux1, and
Katsumi Inoue2

1 Laboratoire des Sciences du Numérique de Nantes, 1 rue de la Noë, 44321 Nantes,
France

xinwei.chai@ls2n.fr,
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,

Japan

Abstract. Learning system dynamics from the observations of state
transitions has many applications in bioinformatics. It can correspond
to the identification of the mutual influence of genes and can help to un-
derstand their interactions. A model can be automatically learned from
time series data by using methods like Learning from interpretation tran-
sition (LFIT). This method learns an exact model if all transitions of the
systems are used as input. However, in real biological data, such com-
plete data sets are usually not accessible and we have to learn a system
with partial observations. Usually, biologists also provide with a priori
knowledge about the system dynamics in the form of temporal proper-
ties. When building models, keeping critical properties valid is one of
the major concerns and model checking plays a role in the verification of
such desired properties. Our research aims at providing a model checking
approach to revise logic programs thanks to temporal properties. In this
paper, as a first step, we propose a method that can exploit reachability
properties to fit such a model.

Keywords: Model Checking, Learning From Interpretation Transition,
Dynamical Systems, Temporal Properties, Local Causality Graph

1 Introduction

When modeling a real system, it is usually demanded to assess the correctness
of a Boolean network with the concrete system by checking if the observed con-
figurations are indeed reachable in the Boolean network. Whenever it is not the
case, it typically means that the designed Boolean functions do not model the
given system correctly, and thus should be revised before further model analy-
sis. In [4], it has been shown that Boolean networks can be represented by logic
programs. In this paper, we provide a method to revise a logic program to fit
temporal properties regarding reachability of partial states. Such logic program
can be learned from observations of state transition using LFIT algorithm in
[7], but the approach restricts the model to only synchronous update scheme.
One of the benefits of synchronous modeling is computational tractability, while
classical state space exploration algorithms fail on asynchronous ones. Yet the
synchronous modeling relies on quite heavy assumptions: all genes can make a
transition simultaneously and need an equivalent amount of time to change their

ILP2018, 036, v1: ’Using Reachability Properties of Logic Program for Revising Biological . . . 1

expression level. Even if this is not realistic from a biological point of view, it is
usually sufficient as the exact kinetics and order of transformations are gener-
ally unknown. However, the asynchronous semantics helps one to capture more
realistic behaviors [1]. At a given time point, at most one single gene can change
its expression level. Non-deterministic behaviors are often observed in biological
systems, e.g. cell differentiation. From a given state, several possible behaviors
can be expected as future states. Asynchronous update scheme results in a po-
tential combinatorial explosion to the number of states. The first contribution
of this paper is a simple adaptation of the LFIT algorithm for learning asyn-
chronous dynamics. The main contribution is a method to revise a logic program
in order to fit given reachability properties. Reachability problem on formal mod-
els is a critical challenge where both validation (whether the model satisfies a
priori knowledge) and prediction (properties to be discovered) problems meet.
From a formal point of view, numerous biological properties can be expressed in
computation models as reachability properties [3]. Existing approaches usually
rely on global search and thus face state space explosion problem as the state
space grows exponentially with the number of components of model. Abstrac-
tion is an efficient strategy to deal with such systems. In [6], local properties
of the model are exploited based on an abstract interpretation: Local Causality
Graph (LCG). [2] provides a hybrid reachability analyzer based on LCG, with
which one can verify the model is consistent with given reachability information
with good runtime and conclusiveness. LFIT framework so far can only capture
finite dynamical properties, i.e. relation at T -1 or T -k and the system has to
be synchronous deterministic. In asynchronous systems, non-determinism can
lead to loops for several times before taking a path to a certain state. In this
paper, we adapt the algorithms of [7,5] to capture asynchronous dynamics and
extend upon this method to propose an approach allowing to fit a logic program
to reachability properties. By modifying rules of the program using logic gen-
eralization/specialization operations, we iteratively revise the program to fit a
set of reachability/unreachability constraints while keeping the observation and
learned rules consistent.

2 Formalization

Boolean asynchronous systems can be non-deterministic, thus from the same
state a variable can take both value 0 or 1. To encode this dynamics, one re-
quires to have explicit rules for each value of a variable and the modeling of [7] is
not suitable. In [5], we proposed a modeling of multi-valued synchronous systems
as annotated logic program. This modeling can be applied to represent Boolean
asynchronous systems and is recalled in the following section. In order to rep-
resent multi-valued variables, all atoms of a logic program are now restricted
to the form varval. The intuition behind this form is that var represents some
variable of the system and val represents the value of this variable. In annotated
logics, the atom var is said to be annotated by the constant val. We consider a
multi-valued logic program as a set of rules of the form

varval ← varval11 ∧ · · · ∧ varvalnn (1)

2 ILP2018, 036, v1: ’Using Reachability Properties of Logic Program for Revising Biological . . .

where varval and varvalii ’s are atoms (n ≥ 1). For any rule R of the form (1), left
part of ← is called the head of R and is denoted as h(R), and the conjunction
to the right of ← is called the body of R. We represent the set of literals in the
body of R of the form (1) as b(R) = {varval11 , . . . , varvalnn }. A rule R of the form
(1) is interpreted as follows: the variable var takes the value val in the next
state if all variables vari have the value vali in the current state. A state of a
multi-valued program provides the value of each variable of the system and a
transitions is a pair of states. The value of a variable in a state is called a local
state. The set of all local state is denoted LS. The subset of state is called a
partial state. A rule R matches a state s when b(R) ⊆ s. A rule R subsumes
a rule R′ when h(R) = h(R′), b(R) ⊆ b(R′). A Boolean Asynchronous system
can be represented by a multi-valued logic program. This section provides the
necessary additional formalization to interpret asynchronous dynamics by such
program and to learn from state transitions.

2.1 Modeling and learning of asynchronous dynamics

Due to the non-deterministic nature of asynchronous systems and its restriction
to atmost one variable change per transition, the notion of consistency, realiza-
tion and successor has to be adapted as follows.

Definition 1 (Consistency). Let R be a rule and E be a set of state transition
(I, J). R is consistent with E iff b(R) ⊆ I implies ∃(I, J) ∈ E, h(R) ∈ J . A logic
program P is consistent with E if all rules of P are consistent with E.

Definition 2 (Program realization). Let P be a logic program and E be a set
of state transitions. P realizes E if ∀(I, J) ∈ E, ∃R, b(R) ⊆ I, (I \ J) = {h(R)}.

Definition 3 (Asynchronous successors). Let I be the current state of an
asynchronous system represented by a set of multi-valued rules S. Let TP (I, S) =
{h(R)|R ∈ S, b(R) ⊆ I}. The successors of I according to S is

T as
P (I, S) = {I \ {vval′} ∪ {vval}|vval′ ∈ I, vval ∈ TP (I, S)} ∪ {I | TP (I, S) = ∅}

We now adapt the LFIT algorithm of [7] to the learning of asynchronous
systems. In synchronous case, the rules R learned by LFIT represent a necessity:
h(R) will be in the next state if R match the current state. In asynchronous
case, the rules represent a possibility: h(R) can be in next state if R match
the current state. It allows the modeling of non-determinism: two rules R,R′

can have the same head variables but different values and match the same state
which occurs in these case: h(R) = varval, h(R′) = varval

′
, val 6= val′ and

varval
′′ ∈ b(R), varval

′′′ ∈ b(R′) =⇒ val′′ = val′′′.
Like in previous versions, LFIT takes a set of state transitions E as input

and outputs a logic program P that realizes E. In [5] multi-valued least special-
ization was used to learn multi-valued synchronous systems dynamics. Starting
from the most general rules, least specialization allows to learn the minimal rules
of such system iteratively from its state transition (I, J) ∈ E. For every possi-
ble varval, varval 6∈ J the most specific rule that is not consistent, with the
transition, i.e. an anti-rule, was generated: MSR := varval ← I. Here, for the

ILP2018, 036, v1: ’Using Reachability Properties of Logic Program for Revising Biological . . . 3

asynchronous case, this anti-rule is generated and the revision occurs only if
∄(I, J ′) ∈ E, varval

′ ∈ J ′, i.e. it is impossible to have a transition to varval from
I. Each rule of the currently learned program P that subsumes such an anti-rule
are specialized using least specialization. The resulting program P ′ is consistent
and realizes all previously treated transition plus (I, J). Doing so iteratively for
each transitions, the algorithm output a program P which model the dynamics
of the system observed in the transitions E.

Asynchronous LFIT
– INPUT: B a set of annotated atoms and E a set of transitions
– Initialize P := {varval ← ∅ | varval ∈ B}
– For each (I, J) ∈ E
• For each varval ∈ B
∗ If ∄(I, J ′) ∈ E, varval ∈ J ′

∗ MSR := varval ← I
∗ Extract each rule R of P that subsumes MSR: MR := {R ∈ P |

h(R) = varval, b(R) ⊆ I}, P := P \MR
∗ For each R ∈MR
· Compute its least specialization P ′ = ls(R,MSR,B).
· Remove all the rules in P ′ subsumed by a rule in P .
· Remove all the rules in P subsumed by a rule in P ′.
· Add all remaining rules in P ′ to P .

– OUTPUT: P

2.2 Reachability analysis

In the following definitions α is a state and ω a local state.

Definition 4 (LCG). Given a logic program P , an initial state α and a target
state ω, LCG(P, α, ω) = (Vstate, Vrule, Edges) is the smallest recursive structure
with Edges ⊆ (Vstate × Vrule) ∪ (Vrule × Vstate) which satisfies:

ω ∈ Vstate

ai ∈ Vstate ⇔ {(ai, R)|ai ∈ α, h(R) = ai} ⊆ Edges

R ∈ Vrule ⇔ {(R, b(R))} ⊆ Edges

where Vstate ⊆ LS and Vrule ⊆ P are the vertices of LCG.

Definition 5 (Trajectory). Given a logic program P and s0 = α, a trajectory
t from α is a sequence of rule-state pairs t = (R1, s1) :: . . . :: (Ri, si) :: . . . ::

(Rn, sn) s.t each i > 0, si ∈ T as
P (si−1, P), si = (si−1\vval ∈ si−1)∪vval

′
, h(Ri) =

vval
′
), b(R) ⊆ si−1. From α, the reached state sn by t is denoted α · t.

Definition 6 (Reachability). Given a logic program P , ω is said reachable in
P from α iff there exists a trajectory t s.t. α·t = ω and is denoted reachable(P, α, ω),
otherwise unreachable(P, α, ω).

Definition 7 (Consistent program). Let P be a logic program, Re (resp.
Un) be a set of reachability (resp. unreachability) properties. P is said to be
consistent with Re (resp. Un) iff ∀(α, ω) ∈ Re, ∃ a trajectory t in P s.t. α.t = ω
and ∀(α, ω) ∈ Un, ∄ a trajectory t in P s.t. α.t = ω.

4 ILP2018, 036, v1: ’Using Reachability Properties of Logic Program for Revising Biological . . .

Specializing a rule is to add elements in the body of a rule, thus to make the
condition of a rule more difficult to be satisfied (in a more specialized situation)
as the condition of firing becomes more strict.

Definition 8 (Least Specialization of a rule). Let R be a rule, a least spe-

cialization of R is a rule R′ ∈ ls(R) := {h(R) ← b(R) ∪ {varval}, ∄varval′ ∈
b(R)}. If R contains already all the variables in its body, the only way to special-
ize R is to remove R.

Similarly, generalization of a rule is to remove certain elements in the body
of a rule, thus to make the condition of a rule easier to be satisfied.

Definition 9 (Least Generalization of a rule). Let R be a rule, a least
generalization of R is a rule R′ ∈ lg(R) := {h(R)← b(R) \ {x}, x ∈ b(R)}.

Definition 10 (Revisable). A logic program P is said revisable w.r.t. a reach-
ability (resp. unreachability) property if: ∃P ′ ∈ {(P \ RP) ∪ {R′ | R ∈ RP , R

′ ∈
ls(R)∪lg(R)}} | RP ⊆ P}. P is revisable w.r.t. to a set of property S: if their ex-
ists an ordering S′ of the elements of S such that each ith revision, 0 ≤ i ≤ |S′|,
(P being the 0th revision) is revisable w.r.t. the i+ 1th property.

From definition 10, it follows that the revision of logic program P w.r.t.
a set of reachability/unreachability properties S can be found (or proved to
be non-existent) by brute force enumeration of all possible ordering of S and
trying all possible iterative revisions of P . In the next section we propose an
algorithm exploiting the LCG structure to restrict the search to valid ordering
of the properties.

3 Algorithm

In this section we propose an algorithm that exploits the previous formalization
to fit a logic program to reachability properties. Given a set of transition E of
an asynchronous system S, a logic program P is learned via the adaptation of
LFIT of section 2.1. When E is partial, the learned program P does not have
the exact dynamics of S. Given a set of reachability properties Re and a set
of unreachability properties Un of S, we propose an algorithm to revise P so
that the dynamics of P satisfy S. As discussed previously, this can be done by
complete brute force but here we propose a first attempt to reduce the search
space. Furthermore, our aim is to find what could be considered a metric of
minimal revision of P : a revision P ′ s.t. ∄P ′′, (P ′′ \ P ∩ P ′′) ⊆ (P ′ \ P ∩ P ′)

Specialization/generalization operations aim to revise the rule nearest to the
target state in the LCG. If it is not possible, they try to revise the successor,
if there is no possible solution, return ∅ to show the input logic program is
not revisable. Specialization operation is limited by the observation. If P after
specialization can not explain all the transitions, the specialization is not admis-
sible. Generalization is similar but without the constraint of the observation, as
the observation is partial, P may describe some state transitions never observed.

ILP2018, 036, v1: ’Using Reachability Properties of Logic Program for Revising Biological . . . 5

Specialization:

– Input: a logic program P , an unsatisfied element (α, ω), a reachable set Re,
an unreachable set Un

– Output: modified logic program P or ∅ if not revisable

1. Rev ← {ω}
2. For each R s.t. h(R) = Rev, for each R′ ∈ {R′′|R′′ ∈ ls(R) ∧ ∄(I, J) ∈

E, s.t. ∄R′′′ ∈ P ∪ {R′′} \ {R}, h(R′′′) ∈ J, b(R′′′) ∈ I}
– If P ′ ← P \{R}∪{R′}, unreachable(P ′, α, ω) and P ′ satisfies all previous

properties, return P ′

3. Rev ← b(R) with h(R) = Rev and back to step 2
4. There is no revision for (α, ω), return ∅

Generalization:

– Input: a logic program P , an unsatisfied element (α, ω), a reachable set Re,
an unreachable set Un

– Output: modified logic program P or ∅ if not revisable

1. Rev ← {ω}
2. For each R s.t. h(R) = Rev, for each R′ ∈ lg(R)

– If P ′ ← P \ {R} ∪ {R′}, reachable(P ′, α, ω) and P ′ satisfies all previous
properties, return P ′

3. Rev ← b(R) with h(R) = Rev and back to step 2
4. There is no revision for (α, ω), return ∅

Complete revision:

– Input: a logic program P , a reachable set Re and an unreachable set Un
– Output: revised logic program P or ∅ if not revisable

1. Construct the cycle-free LCGs for the elements in Re and Un and compute
unsatisfied sets Re′ ⊆ Re and Un′ ⊆ Un which are to be revised

2. If Re′ = ∅ and Un′ = ∅, return P
3. Let L = {li, . . .} with i ∈ Re′∪Un′, li = {j, . . .}, with j = (α, ω), ω ∈ LCG(i)

and j ∈ Re ∪ Un
4. Pick one of li ∈ L of the smallest cardinality: ∄l′i, |l′i| < |li|
5. If li ∩ (Re′ ∪ Un′) 6= ∅,

(a) Reconstruct the LCG for i
(b) If li becomes consistent because of former revision, L ← L \ {li} and

back to step 4
6. If i ∈ Un′, specialize P to make i unreachable, if not revisable, return ∅
7. Otherwise generalize P to make i reachable, if it is not revisable, return ∅
8. L← L \ {li}
9. If L 6= ∅ , back to step 1

10. Return P

6 ILP2018, 036, v1: ’Using Reachability Properties of Logic Program for Revising Biological . . .

The main algorithm starts with constructing the LCGs to verify Re and Un in
order to ensure the reachability/unreachability properties to be satisfied. Then,
for the unsatisfied properties, the program P has to be revised. LCG can share
the elements s.t. revising one can modify the others. By starting with the LCGs
with least dependencies with others, i.e. the ones with the smallest cardinality of
li, it increases the chance of partially satisfying other unsatisfied properties (step
3 and 4). Then all possible revision of P are generated using least specialization
or generalization according to li ∈ Re or li ∈ Un (step 6 and 7). Each revision
of P is checked against Re and Un to verify that all properties satisfied by P
are still satisfied. If new ones are satisfied, L is updated accordingly (step 5).
We update P until there is no unsatisfied properties (step 8 and 9). Finally,
if a revision of P consistent with all given properties is found the algorithm
terminates and output it.

4 Conclusion

In this paper, we strengthen the capability of LFIT framework to the learning
of Boolean asynchronous systems in the form of logic programs. Asynchronic-
ity implies non-determinism which is meaningful to the modeling of uncertain
parts in biology. We propose a method revising the logic program learned by
LFIT w.r.t. the knowledge on reachability properties. If the logic program is
revisable, the revision is consistent with both state transitions and reachability
information. However, our algorithm does not guarantee the minimal revision of
the logic program. As future works, considering the metric for minimal revision
and designing a related algorithm will be interesting. Adapting more dynamical
properties other than reachability also remains as our future work.

References

1. G. Bernot and F. Tahi. Behaviour preservation of a biological regulatory network
when embedded into a larger network. Fundamenta Informaticae, 91(3-4):463–485,
2009.

2. X. Chai, M. Magnin, and O. Roux. A Heuristic for Reachability Problem in Asyn-
chronous Binary Automata Networks, 2018. arXiv:1804.07543v1.

3. E. M. Clarke and Q. Wang. 25 years of model checking. In International Andrei
Ershov Memorial Conference on Perspectives of System Informatics, pages 26–40.
Springer, 2014.

4. K. Inoue. Logic programming for boolean networks. In Proceedings of the Twenty-
Second international joint conference on Artificial Intelligence-Volume Volume Two,
pages 924–930. AAAI Press, 2011.

5. D. Mart́ınez Mart́ınez, T. Ribeiro, K. Inoue, G. Alenyà Ribas, and C. Torras. Learn-
ing probabilistic action models from interpretation transitions. In Proceedings of the
Technical Communications of the 31st International Conference on Logic Program-
ming (ICLP 2015), pages 1–14, 2015.

6. L. Paulevé, M. Magnin, and O. Roux. Static analysis of biological regulatory net-
works dynamics using abstract interpretation. Mathematical Structures in Computer
Science, 22(04):651–685, 2012.

7. T. Ribeiro and K. Inoue. Learning prime implicant conditions from interpretation
transition. In Inductive Logic Programming, pages 108–125. Springer, 2015.

ILP2018, 036, v1: ’Using Reachability Properties of Logic Program for Revising Biological . . . 7

