
Efficiently Encoding Meta-Interpretive Learning
by Answer Set Programming (Work in Progress)⋆

Tobias Kaminski1, Thomas Eiter1, and Katsumi Inoue2

1 Technical University of Vienna (TU Wien), Vienna, Austria
{kaminski,eiter}@kr.tuwien.ac.at

2 National Institute of Informatics, Tokyo, Japan
inoue@nii.ac.jp

Abstract. Meta-Interpretive Learning (MIL) learns logic programs from exam-
ples by instantiating meta-rules, which is implemented by the Metagol system
using Prolog. Based on previous work wrt. solving MIL by employing Answer
Set Programming, in this work-in-progress paper we describe a modification of a
previous MIL-encoding which prunes the search space more effectively by sim-
ulating a top-down search as performed by Prolog. Initial experiments show that
our new encoding can significantly speed up the inductive learning process.

1 Introduction

Meta-Interpretive Learning (MIL) [4] is a recent approach for learning logic programs
from positive and negative examples wrt. background knowledge by instantiating so-
called meta-rules, which specify the shapes of rules that may be used in the induced
program. The formalism is very powerful as it enables predicate invention and supports
learning of recursive programs. The Metagol system is an efficient implementation of
MIL based on a classical Prolog meta-interpreter, which uses a query-driven procedure
to effectively steer the instantiation of meta-rules needed for deriving positive examples.
Yet, the sequential treatment of examples that goes along with it can also be disadvan-
tageous since the derivability of negative examples is only detected after all positive
examples are covered. This has been identified as a bottleneck of Metagol [2].

Viewing MIL as combinatorial search problem, it can alternatively be encoded by
Answer Set Programming (ASP), which may speed up solving significantly due to early
detection and learning from conflicts arising due to the derivability of negative exam-
ples. Muggleton et al. already observed that ASP can have an advantage for MIL over
Prolog due to effective pruning [3], but their encoding only used one specific meta-rule
and was tailored to inducing grammars. However, when multiple meta-rules are used
and the background knowledge is more extensive, a straightforward encoding easily
yields a huge search space that makes solving infeasible. For this reason, more so-
phisticated MIL-encodings have been proposed [2]. They limit the search space by in-
terleaving derivations at the object level and the meta level such that only potentially

⋆ This research has been supported by the Austrian Science Fund (FWF) projects P27730 and
W1255-N23.

ILP2018, 039, v2: ’Efficiently Encoding Meta-Interpretive Learning by Answer Set Progr� . . . 1

2 Kaminski et al.

relevant instantiations of meta-rules wrt. pieces of information are generated which are
already derivable in a bottom-up fashion.

The approach by Kaminski et al. employs HEX-programs [1], which extend ASP
with a bidirectional information exchange between a program and arbitrary external
sources of computation via special external atoms. Their basic encoding utilizes exter-
nal atoms to outsource background knowledge that defines manipulations of complex
terms such as lists and strings, which is easy to realize in Prolog but less supported
by ASP. Moreover, Kaminski et al. identified a class of MIL-problems widely studied
which can be solved efficiently by their HEX-encodings, and showed empirically that
the performance can be increased compared to Metagol by employing ASP.

Even though conflicts resulting from negative examples can be propagated effec-
tively in the approach of Kaminski et al., the query-driven procedure of Metagol still
has an advantage wrt. finding derivations of positive examples as it generates exactly
one instantiation of a meta-rule for proving the next subgoal during SLD-resolution.
In comparison, the hypothesis space generated by the HEX-encodings is larger and po-
tentially generates many rules that are not required for deriving any subgoal due to its
bottom-up nature, such that there is still room for improvement. Ideally, an approach
would combine the effective top-down derivation of positive examples of Metagol with
the propagation of conflicts resulting from negative examples for early backtracking.
However, the obstacle wrt. this combination so far consisted in the fact that a naive
top-down encoding in ASP that models the original search space of Metagol requires
the generation of all ground instances of instantiated meta-rules due to the grounding
bottleneck of ASP, which is highly infeasible.

In this paper, we present work in progress towards solving the mentioned challenge
regarding a simulation of backward-chaining in ASP. Our new MIL-encoding works
in two stages, by first constructing all ground instances of instantiated meta-rules that
are possibly relevant for deriving positive examples in a bottom-up manner as before,
and simulating a top-down search for a hypothesis that models all positive examples
only wrt. these rule instances. This way, the size of the grounding can be restricted
drastically, and first experiments using our new encoding indicate that simulating a top-
down search can further increase the performance of solving MIL-problems by ASP.

In the next section, we first recall the essential notions of MIL and demonstrate the
bottom-up MIL-encoding of Kaminski et al. by means of an example. In Section 3,
we describe a modified encoding that simulates the top-down derivation of positive
examples and present preliminary empirical results, before we conclude and shortly
discuss ongoing work in Section 4.

2 Previous Bottom-Up MIL-Encoding

In this section, we summarize the main aspects of the forward-chained HEX-MIL-
encoding by Kaminski et al. [2] for solving MIL-problems.

Formally, a MIL-problem in our setting is a quadruple M = (B,E+,E−,R), where
B is the background knowledge represented by a logic program, E+ and E− are finite
sets of binary ground atoms called positive resp. negative examples, and R is a finite
set of meta-rules. At this, we consider meta-rules of the form P(x,y)← Q1(x1,y1), ...,

2 ILP2018, 039, v2: ’Efficiently Encoding Meta-Interpretive Learning by Answer Set Progr� . . .

Efficiently Encoding Meta-Interpretive Learning by ASP 3

Qk(xk,yk), R1(z1), ...,Rn(zn), where P, Qi, 1≤ i≤ k, and R j, 1≤ j≤ n, are higher-order
variables, and x,y,xi,yi, 1 ≤ i ≤ k, and z j, 1 ≤ j ≤ n, are first-order variables s.t. x and
y also occur in the body. A meta-substitution of a meta-rule R is an instantiation of R
where all higher-order variables are substituted by predicate symbols. A solution for
M is a hypothesis H consisting of a set of meta-substitutions of meta-rules in R s.t.
B∪H |= e+ for each e+ ∈ E+ and B∪H 6|= e− for each e− ∈ E−.

The forward-chained HEX-MIL-encoding of Kaminski et al. is restricted to MIL-
problems where R only contains forward-chained meta-rules, i.e. meta-rules where the
elements x,y in the binary head p(x,y) are connected via a path p1(x1,x2), p2(x2,x3),
. . . , pk(xk,xk+1) in the body, where x = x1 and xk+1 = y.

Example 1. Consider a MIL-problem M with R = {P(x,y)←Q(x,z),R(z,y); P(x,y)←
Q(x,y),R(y)} and B= {remove([X |R],R)←; empty([])←}, where the predicate remove
drops the first element from a list and empty checks if a list is empty. Furthermore, let
E+ = {p([a,a], []), p([b,b], [])}, E− = {p([a,a,a], [a]), p([b,b,b], [])} be the given pos-
itive and negative examples. Accordingly, a corresponding hypothesis intuitively needs
to remove all elements (only) from a list containing two elements provided as the first
argument of an example to yield an empty list in the second argument position. This
is, e.g., captured by the hypothesis H = {p(x,y)← remove(x,z), p1(z,y); p1(x,y)←
remove(x,y),empty(y)}, where p1 is an invented predicate.

The MIL-encodings of Kaminski et al. utilize external atoms in rule bodies, pro-
vided by the HEX-extension [1] of ASP, for interfacing the respective background knowl-
edge. At this, input values in form of predicates and constants are provided to an exter-
nal source which computes corresponding output values. For instance, if the background
knowledge defines a predicate that drops the first element of a list provided as first argu-
ment and returns the resulting list as second argument, an external atom &remove[X](Y)
might be used, which would evaluate to true for all instantiations of X and Y where X
is a Prolog list and Y is obtained from X by removing its first element.

As in the Metagol implementation of MIL, we assume a given set S of Skolem
predicates that can be used for predicate invention, and an ordering �P over all predi-
cates that can be instantiated for higher-order variables in meta-rules, which is used for
constraining the set of permissible meta-substitutions. Together with facts ord(p,q) for
all predicates p and q s.t. p �P q and facts pos ex(a,b) and neg ex(a,b) for all given
positive and negative examples, resp., the rules (B1)-(B12) in Figure 1 correspond to the
forward-chained HEX-MIL-encoding for M from Example 1 as introduced by Kamin-
ski et al., which guesses new meta-substitutions based on facts that are already derivable
in a bottom-up manner.

The rules (B1) and (B2) import all terms that can be derived from unary and bi-
nary predicates defined by the background knowledge wrt. already imported terms in
an inductive manner via rule (B5) by utilizing external atoms. At this, the import starts
from terms that occur as the first argument of an example according to rules (B3) and
(B4), and new terms are added incrementally to the extension of the predicate state. The
predicate meta contains all meta-substitutions added to an induced hypothesis. The rules
(B6)-(B8) define the predicate ded, which captures all atoms that can be deduced from
the meta-substitutions in a guessed hypothesis together with the imported background

ILP2018, 039, v2: ’Efficiently Encoding Meta-Interpretive Learning by Answer Set Progr� . . . 3

4 Kaminski et al.

binary bg(remove,X ,Y) ←&remove[X](Y),state(X). (B1)

unary bg(empty,X) ←&empty[X](),state(X). (B2)

state(X) ← pos ex(,X ,). (B3)

state(X) ←neg ex(,X ,). (B4)

state(Y) ←binary bg(, ,Y). (B5)

ded(P,X ,Y) ←binary bg(P,X ,Y). (B6)

ded(P,X ,Y) ←meta(postcon,P,Q,R),ded(Q,X ,Y),unary bg(R,Y). (B7)

ded(P,X ,Y) ←meta(chain,P,Q,R),ded(Q,X ,Z),ded(R,Z,Y). (B8)

←neg ex(P,X ,Y),ded(P,X ,Y). (B9)

{meta(chain,P,Q,R)} ←ord(P,Q),ord(P,R),ded(Q,X ,Z),ded(R,Z,Y). (B10)

{meta(postcon,P,Q,R)} ←ord(P,Q),ded(Q,X ,Y),unary bg(R,Y). (B11)

← pos ex(P,X ,Y),notded(P,X ,Y). (B12)

Fig. 1. Bottom-up MIL-encoding of M from Example 1.

knowledge. In turn, new meta-substitutions are guessed by rules (B10) and (B11), where
(B10) generates substitutions of the first (chain) meta-rule in R, and (B11) of the sec-
ond (postcon) meta-rule; and the heads of the rules encode that an arbitrary number of
instances of the head may be true whenever the rule body is satisfied. Importantly, only
those meta-substitutions can be added where the body atoms of some ground instance
can already be derived in a bottom-up manner, i.e. only if it is potentially useful for de-
riving a positive example. Accordingly, the encoding interleaves bottom-up derivations
at the object level and guesses at the meta level; this constitutes a main difference to
the first ASP-encoding of MIL by Muggleton et al. [3]. Finally, the constraint in rule
(B12) ensures that all positive examples can be derived. Solutions of M correspond to
the sets of atoms with predicate meta contained in the answer sets of the encoding.

3 New Top-Down MIL-Encoding

As already mentioned in Section 1, the MIL-encoding in Figure 2 merely guesses meta-
substitutions for deriving positive examples based on pieces of information that are de-
rived in a bottom-up fashion, such that the constraint in rule (B12) is required to ensure
that all positive examples are indeed entailed by the guessed hypothesis. This has the
disadvantages that (i) missing rules for deriving some subgoal in the derivation of pos-
itive examples are only detected late after checking the constraint, and (ii) more meta-
substitutions than necessary may be added to a solution. The latter increases the size of
the obtained solution and makes the derivability of negative examples more likely. Ac-
cordingly, in this section, we introduce a novel variant of our previous forward-chained
HEX-MIL-encoding, which selects exactly one ground instance of a meta-substitution
for each subgoal that needs to be derived in the derivation of positive examples; in a
way, it simulates backward-chaining as performed by Prolog.

4 ILP2018, 039, v2: ’Efficiently Encoding Meta-Interpretive Learning by Answer Set Progr� . . .

Efficiently Encoding Meta-Interpretive Learning by ASP 5

ded a(bg,P,n,n,X ,Y,n) ←binary bg(P,X ,Y). (T10)

ded a(postcon,P,Q,R,X ,Y,n) ←ord(P,Q),ded a(,Q, , ,X ,Y,),unary bg(R,Y). (T11)

ded a(chain,P,Q,R,X ,Y,Z) ←ord(P,Q),ord(P,R),ded a(,Q, , ,X ,Z,), (T12)

ded a(,R, , ,Z,Y,).

goal(P,X ,Y) ← pos ex(P1,X ,Y). (T13)

goal(Q,X ,Z) ←ded u(chain,P,Q,R,X ,Y,Z). (T14)

goal(R,Z,Y) ←ded u(chain,P,Q,R,X ,Y,Z). (T15)

goal(Q,X ,Y) ←ded u(postcon,P,Q,R,X ,Y,). (T16)

{ded u(M,P,Q,R,X ,Y,Z) : ded a(M,P,Q,R,X ,Y,Z)}= 1 ← goal(P1,X ,Y). (T17)

meta(M,P,Q,R) ←ded u(M,P,Q,R,X ,Y,Z),M 6= bg. (T18)

Fig. 2. Top-down MIL-encoding of M from Example 1.

Now, a straightforward approach would generate all possible instances of meta-
substitutions during grounding and select one of them for each subgoal. This would
make grounding infeasible. Hence, we need to limit the number of ground meta-substitu-
tions produced during grounding. To this end, we first compute all relevant instances
that can be obtained from the imported background knowledge and meta-rules in a
bottom-up fashion, similar as done by the rules (B7) and (B8) of the previous encod-
ing. The difference is that meta-substitutions are not guessed but all possible meta-
substitutions are taken into account. Accordingly, an envelope for the ground instances
of meta-substitutions that are used for the top-down derivation of positive examples is
generated first.

Our new top-down MIL-encoding for M from Example 1 is obtained from the en-
coding presented in Section 2 by using rules (B1)-(B9) in Figure 1 together with the
new rules (T10)-(T18) in Figure 2. The crucial difference consists in the fact that meta-
substitutions which are contained in an induced hypothesis are not guessed as by rules
(B10) and (B11) in the previous encoding, but added via rule (T18) when some respec-
tive ground instance is selected in a recursive derivation of subgoals by rules (T13)-
(T17). As a result, the constraint (B12) can also be omitted since it is already ensured
that each positive example is entailed by the resulting hypothesis. First, the rules (T10)-
(T12) produce all ground instances of meta-subsitutions that can be derived, starting
from the background knowledge using all possible meta-substitutions, and store them
in the extension of the predicate ded a. Second, to simulate the top-down search for
proving the positive examples, rule (T13) defines positive examples as initial goals.
Rule (T17) states that for each new subgoal there needs to be exactly one ground in-
stance of a meta-substitution that allows to derive it, where used instances are stored in
the extension of the predicate ded u. The rules (T14)-(T16) recursively add new sub-
goals to the predicate goal, based on the rule instances selected by rule (T17). Finally,
rule (T18) accumulates all meta-substitutions representing a computed hypothesis in
the extension of the predicate meta.

We have tested the new top-down MIL-encoding utilizing two benchmark problems
already used by Kaminski et al. [2], and compared it to Metagol as well as the previous

ILP2018, 039, v2: ’Efficiently Encoding Meta-Interpretive Learning by Answer Set Progr� . . . 5

6 Kaminski et al.

0 2 4 6 8 10 12 14 16 18 20 22 24

0
50

100
150
200
250
300
350
400
450

String Transformation

Metagol
Bottom-Up
Top-Down

2 4 6 8 10 12 14

0
100
200
300
400
500
600

East-West Trains

Metagol
Bottom-Up
Top-Down

Fig. 3. Benchmark results of comparing a top-down and a bottom-up ASP-encoding to Metagol.

bottom-up MIL-encoding by Kaminski et al. Figure 3 shows the corresponding results,
where the x-axis indicates the problem size and the y-axis shows the running time in
seconds (averaged over 20 instances in case of the string transformation benchmark,
and over 10 instances for the east-west trains benchmark).1 The timeout was set to 600
seconds for both experiments. We found that by using our new encoding, an additional
speed up over Metagol and wrt. the previous MIL-encoding is possible.

4 Conclusion and Ongoing Work

In this work-in-progress paper, we have reported initial results regarding a novel ASP-
encoding for solving MIL-problems, which modifies a previously developed encoding
by simulating backward-chaining. The next steps of our work consist in defining a gen-
eral formalization of the new encoding applicable to arbitrary forward-chained MIL-
problems, and to show its soundness and completeness. Moreover, we are planning to
investigate the relations of our encodings to magic sets in ASP, which also serve the
purpose of combining advantages of bottom-up and top-down evaluation in logic pro-
gramming. Finally, further goals of future work are to also apply our new techniques to
the second MIL-encoding of Kaminski et al. [2] that abstracts from object-level terms,
and to perform more extensive tests using additional benchmark problems.

References

1. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model building frame-
work for answer set programming with external computations. TPLP 16(4), 418–464 (2016)

2. Kaminski, T., Eiter, T., Inoue, K.: Exploiting answer set programming with external sources
for meta-interpretive learning. CoRR abs/1805.00068 (2018), http://arxiv.org/abs/1805.00068

3. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive learning:
application to grammatical inference. Machine Learning 94(1), 25–49 (2014)

4. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order
dyadic datalog: predicate invention revisited. Machine Learning 100(1), 49–73 (2015)

1 All instances can be found at http://www.kr.tuwien.ac.at/research/projects/inthex/hexmil/.

6 ILP2018, 039, v2: ’Efficiently Encoding Meta-Interpretive Learning by Answer Set Progr� . . .

