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Motivations

Research area

Idea: given a set of input/output states of a black-box system, learn its
internal mechanics.

Input Output?
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Motivations

Research area

Discrete system: input/output are vectors of same size which contain
discrete values.

100 011?
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Motivations

Research area

Dynamic system: input/output are state of the system and output
becomes the next input.

Discrete
State

Discrete
State

Dynamic
System
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Motivations

Research area

Goal: produce an artificial system with the same behavior as the one
observed, i.e. a digital twin.

Digital
Twin

Real
System
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Motivations

Research area

Representation: propositional logic programs with annotated atoms
encoding multi-valued variables.
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Motivations

Research area

Method: learn the dynamics of systems from the observations of some of
its state transitions.
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a(0,T) :- a(2,T-1)
a(1,T) :- a(0,T-1), b(0,T-1).
a(2,T) :- a(1,T-1)
a(2,T) :- a(0,T-1), b(2,T-1).

b(0,T) :- a(1,T-1).
b(1,T) :- b(0,T-1).
b(2,T):- b(2,T-1).

DATA

RESULTS
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Motivations

Motivation

Data: time series of genes expression levels in a organic cell.
Goal: model genes interactions to understand their influences.

000 010?

Example (Possible Applications)

Bioinformatics: Construct gene regulatory networks.

Robotics: Learn action models from robot observations.
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Motivations

Motivation

Data: observations of environment evolution according to a robot actions.
Goal: produce a predictive model of the environment for action planning.

000 010?

Example (Possible Applications)

Bioinformatics: Construct gene regulatory networks.

Robotics: Learn action models from robot observations.
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Motivations

Semantics
Boolean network transitions differ according to the update semantics used.

a b f(a) := not b.
f(b) := not a.

Asynchronous General
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Synchronous: all variable are updated

Asynchronous: only one variable is updated

General: any number of variable can be updated
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Motivations

What is a semantics?

For those three semantics atleast its about computing the next state by
selecting among applicable local rules the ones that will be applied.

000 010
Applicable

Rules
Applied
Rules

Semantics: what is an applicable rule and what is a valid set of applied rule.

The three semantics differ on the selection but share the same definition of
what is an applicable rule.
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Motivations

Learning algorithm intuition: classification problem

What is an applicable rule?

The conditions so that a variable can take a
certain value in next state.

Equivalent to a classification problem: for each variable value, what is a
typical state where the variable can takes this value in the next state ?
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Formalization
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Formalization

Multi-valued Logic (MVL)

Definition (Atoms)

Let V = {v1, . . . , vn} be a finite set of n ∈ N variables, and dom : V → N
The atoms of MVL are of the form vval where v ∈ V and
val ∈ J0; dom(v)K. The set of such atoms is denoted by AV

dom or simply A.

Definition (Rules)

A MVL rule R is defined by:

R = vval00 ← vval11 ∧ · · · ∧ vvalmm (1)

where ∀i ∈ J0;mK, vval ii ∈ A are atoms in MVL.

Left-hand side is called the head of R and is denoted h(R) := vval00 .
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A MVL rule R is defined by:

R = vval00 ← vval11 ∧ · · · ∧ vvalmm (1)

where ∀i ∈ J0;mK, vval ii ∈ A are atoms in MVL.

var(h(R)) := v0 denotes the variable that occurs in h(R).
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Formalization

Multi-valued Logic (MVL)
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R = vval00 ← vval11 ∧ · · · ∧ vvalmm (1)

where ∀i ∈ J0;mK, vval ii ∈ A are atoms in MVL.

Right-hand side is called the body of R, written b(R) := {vval11 , . . . , vvalmm }
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Formalization

Multi-valued Logic (MVL)

Definition (Atoms)

Let V = {v1, . . . , vn} be a finite set of n ∈ N variables, and dom : V → N
The atoms of MVL are of the form vval where v ∈ V and
val ∈ J0; dom(v)K. The set of such atoms is denoted by AV

dom or simply A.

Definition (Rules)

A MVL rule R is defined by:

R = vval00 ← vval11 ∧ · · · ∧ vvalmm (1)

where ∀i ∈ J0;mK, vval ii ∈ A are atoms in MVL.

A multi-valued logic program (MVLP) is a set of MVL rules.
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Formalization

Rules Properties

Definition (Rule Domination)

Let R1, R2 be two MVL rules. R1 dominates R2, written R2 ≤ R1 if
h(R1) = h(R2) and b(R1) ⊆ b(R2).

Proposition (Double domination is equality)

If R1 ≤ R2 and R2 ≤ R1 then R1 = R2.

Rules with the most general bodies dominate the other rules.
These are the rules we want since they cover the most general cases.
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Formalization

Dynamical System Modeling

Definition (Discrete State)

A discrete state s is a function from V to N, i.e., it associates an integer
value to each variable in V.

It can be equivalently represented by the set of atoms {vs(v) | v ∈ V} and
thus we can use classical set operations on it.

Definition (Transitions)

We write S to denote the set of all discrete states, and a couple of states
(s, s ′) ∈ S2 is called a transition.
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Formalization

Dynamical System Modeling

Definition (Rule-state matching)

Let s ∈ S. The MVL rule R matches s, written R u s, if b(R) ⊆ s.

When matching a state, a rule can be used to realize a transition.

Definition (Rule realization)

A rule R realizes the transition (s, s ′), written s
R−→ s ′, if R u s, h(R) ∈ s ′.

Definition (Program realization)

A MVLP P realizes (s, s ′), written s
P−→ s ′, if

∀v ∈ V,∃R ∈ P, var(h(R)) = v ∧ s
R−→ s ′.

It realizes T ⊆ S2, written
P
↪−→ T , if ∀(s, s ′) ∈ T , s

P−→ s ′.
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Formalization

Desired Properties

In the following, for all sets of transitions T ⊆ S2, we denote:
fst(T ) := {s ∈ S | ∃(s1, s2) ∈ T , s1 = s}.

Definition (Conflicts)

A MVL rule R conflicts with a set of transitions T ⊆ S2 when
∃s ∈ fst(T ),

(
R u s ∧ ∀(s, s ′) ∈ T , h(R) /∈ s ′

)
.

Definition (Concurrent rules)

Two MVL rules R and R ′ are concurrent when
R u R ′ ∧ var(h(R))=var(h(R ′)) ∧ h(R)6=h(R ′).
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Formalization

Definition (Complete program)

AMVLP P is complete if ∀s ∈ S,∀v ∈ V, ∃R ∈ P,R u s ∧var(h(R)) = v.

A complete program realize atleast one transition for each state s ∈ S.

Definition (Consistent program)

A MVLP P is consistent with a set of transitions T if P does not
contains any rule R conflicting with T .

Let s ∈ fst(T ), a program consistent with T will only realize the
transitions (s, s ′) ∈ T .
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Formalization

Optimal MVLP

Definition (Suitable program)

Let T ⊆ S2. A MVLP P is suitable for T when:

P is consistent with T , Cover no negative example

P realizes T , Cover all positive example

P is complete Cover all state space

∀R not conflicting with T , ∃R ′ ∈ P s.t. R ≤ R ′. Cover all hypotheses

Definition (Optimal program)

If in addition, ∀R ∈ P, all the rules R ′ belonging to a MVLP suitable for
T are such that R ≤ R ′ implies R ′ ≤ R then P is called optimal.

An optimal program is the set of all rules that are not dominated by any
consistent rules. Contains all minimal hypotheses
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Formalization

Optimal MVLP

Proposition

Let T ⊆ S2. TheMVLP optimal for T is unique and denoted PO(T ).

Troll mode on: does it works if it is the empty set? :p

Proposition

PO(∅) = {vval ← ∅ | vval ∈ A}.

Yeah ! And this property is the starting point of the learning algorithm.

Proposition

Let T ⊆ S2. If P is aMVLP suitable for T , then
PO(T ) = {R ∈ P | ∀R ′ ∈ P,R ≤ R ′ =⇒ R ′ ≤ R}

We can obtain the optimal program from any suitable program by simply
removing the dominated rules.
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Learning Process

Learning Process

How to make a minimal modifications of a MVLP in order to be suitable
with a new set of transitions?

Definition (Rule least specialization)

Let R be a MVL rule and s ∈ S such that R u s. The least specialization
of R by s is:

Lspe(R, s) := {h(R)← b(R) ∪ {vval} | vval ∈ A ∧ v
val 6∈ s ∧ ∀val′ ∈ N, vval′ 6∈ b(R)}.

Thus, a MVLP can be revised to only realizes given transitions from s.

Definition (Program least revision)

Let P be a MVLP, s ∈ S and T ⊆ S2 such that fst(T ) = {s}. Let
RP := {R ∈ P | R conflicts with T}. The least revision of P by T is
Lrev(P,T ) := (P \ RP) ∪

⋃
R∈RP

Lspe(R, s).
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Learning Process

Learning Process

Guess what? Least revision can conserves suitability :)

Theorem

Let s ∈ S and T ,T ′ ⊆ S2 such that |fst(T ′)| = 1 ∧ fst(T ) ∩ fst(T ′) = ∅.
Lrev(PO(T ),T ′) is aMVLP suitable for T ∪ T ′.

In association with previous results it gives a method to iteratively
compute PO(T ) for any T ⊆ S2, starting from PO(∅).
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Learning Process

GULA: General Usage LFIT Algorithm

GULA:
INPUT: a set of atoms A and a set of transitions T ⊆ S2.
For each atom vval ∈ A

Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}
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Learning Process

GULA: General Usage LFIT Algorithm

GULA:
INPUT: a set of atoms A and a set of transitions T ⊆ S2.
For each atom vval ∈ A

Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s ′) ∈ T , vval ∈ s ′}
Initialize Pvval := {vval ← ∅}

For each state s ∈ Negvval
I Extract each rule R of Pvval that matches s:

Mvval := {R ∈ P | b(R) ⊆ s},Pvval := Pvval \Mvval .
I For each rule R ∈ Mvval

F Compute its least specialization P ′ = Lspe(R, s).
F Remove all the rules in P ′ dominated by a rule in Pvval .
F Remove all the rules in Pvval dominated by a rule in P ′.
F Add all remaining rules in P ′ to Pvval .

P := P ∪ Pvval

OUTPUT: PO(T ) := P.
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Semantics

Where is the semantics gone?

The formalization of MVLP is independant of the semantics that
produced its transitions.

Definition (Semantics)

Let AV
dom be a set of atoms and S the corresponding set of states. A

semantics (on AV
dom) is a function that associates, to each complete

MVLP P, a set of transitions T ⊆ S2 so that: fst(T ) = S. Equivalently,
a semantics can be seen as a function of

(
c-MVLP→ (S → ℘(S) \ ∅)

)
where c-MVLP is the set of complete MVLPs and ℘ is the power set
operator.
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Semantics

Definition (Synchronous semantics)

The synchronous semantics Tsyn is defined by:

Tsyn : P 7→ {(s, s ′) ∈ S2 | s ′ ⊆ {h(R) ∈ A | R ∈ P,R u s}}

Definition (Asynchronous semantics)

The asynchronous semantics Tasyn is defined by:

Tasyn : P 7→ {(s, s\\{h(R)}) ∈ S2 | R ∈ P ∧ R u s ∧ h(R) /∈ s}
∪ {(s, s) ∈ S2 | ∀R ∈ P,R u s =⇒ h(R) ∈ s}.

Definition (General semantics)

The general semantics Tgen is defined by:

Tgen : P 7→ {(s, s\\r) ∈ S2 | r ⊆ {h(R) ∈ A | R ∈ P ∧ R u s} ∧
∀vval11 , vval22 ∈ r , v1 = v2 =⇒ val1 = val2}.
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Semantics

Semantic free modeling

Finally, we can state that the definitions and method developed in the
previous section are independent of those three semantics.

Theorem (Semantics-free correctness)

Let P be aMVLP such that P is complete.

Tsyn(P) = Tsyn(PO(Tsyn(P))),

Tasyn(P) = Tasyn(PO(Tasyn(P))),

Tgen(P) = Tgen(PO(Tgen(P))).

Whatever the semantic which produced T , given the optimal MVLP of T
we can reproduce exactly T with the same semantic.
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Semantics

GULA: General Usage LFIT Algorithm

And GULA can learn such an optimal MVLP from T .

Theorem (GULA Termination, soundness, completeness, optimality)

Let T ⊆ S2. The call GULA(A,T ) terminates and
GULA(A,T ) = PO(T ).

Making the algorithm semantic-free atleast for those three semantics.

Theorem (Semantic-freeness)

Let P be aMVLP such that P is complete.

GULA(A, Tsyn(P)) = PO(Tsyn(P))

GULA(A, Tasyn(P)) = PO(Tasyn(P))

GULA(A, Tgen(P)) = PO(Tgen(P))

Victory! In theory, but how does it scale in practice?
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Evaluation

Evaluation

Theorem (GULA Complexity)

Let T ⊆ S2 be a set of transitions, n := |V| be the number of variables of
the system and d := max(dom(V)) be the maximal number of values of its
variables. The worst-case time complexity of GULA when learning from T
belongs to O(|T |2 + 2n3d2n+1 + 2n2dn) and its worst-case memory use
belongs to O(d2n + 2dn + ndn+2).

Ribeiro et al (LS2N, IRISA, NII) GULA: semantic free dynamics learning 4th September 2018, ILP 29 / 33



Evaluation

Evaluation

1 2 3 4 5 6 7 8
0

0,01

0,1

1

10

100

1000

10000

 Synchronous

Asynchronous

General

Number  of Variables

R
u

n
 ti

m
e

 in
 s

e
co

n
d

s

2 3 4 5 6 7 8 9 10 11 12 13 14
0

0,01

0,1

1

10

100

1000

10000

Synchronous

Asynchronous

General

Number of variables values

R
u

n
 ti

m
e

 in
 s

e
co

n
d

s

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
0

500

1000

1500

2000

2500

3000

3500

Synchronous

Asynchronous

General

Number of transitions

R
u

n
 ti

m
e

 in
 s

e
co

n
d

s

Evaluation of GULA’s scalability w.r.t. number of variables (top left), number of
variables values (top right) and number of input transitions (bottom).

Ribeiro et al (LS2N, IRISA, NII) GULA: semantic free dynamics learning 4th September 2018, ILP 30 / 33



Evaluation

Evaluation

Semantics Mammalian (10) Fission (10) Budding (12) Arabidopsis (15)
Synchronous 1.84s / 1, 024 1.55s / 1, 024 34.48s / 4, 096 2, 066s / 32, 768

Asynchronous 19.88s / 4, 273 19.18s / 4, 217 523s / 19, 876 T.O. / 213, 127
General 928s / 34, 487 1, 220s / 29, 753 T.O. / 261, 366 T.O. / > 500, 000

Run time of GULA (run time in seconds / number of transitions as input) for
Boolean network benchmarks up to 15 nodes for the three semantics.
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