Learning Dynamics with Synchronous, Asynchronous and General Semantics

Tony Ribeiro¹, Maxime Folschette², Morgan Magnin¹, Olivier Roux¹, Katsumi Inoue³

Laboratoire des Sciences du Numérique de Nantes, France
Univ Rennes, Inria, CNRS, IRISA, IRSET, F-35000 Rennes, France
National Institute of Informatics, Tokyo, Japan

4th September 2018, ILP, Ferarra

Outline

Formalization 2

3 Learning Process

Semantics

æ

Outline

1 Motivations

- 2 Formalization
- 3 Learning Process

4 Semantics

æ

3 / 33

< 回 > < 三 > < 三 >

Idea: given a set of input/output states of a black-box system, learn its internal mechanics.

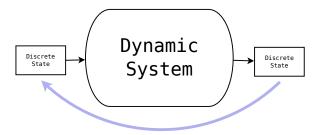
E 5 4 E 5

Discrete system: input/output are vectors of same size which contain discrete values.

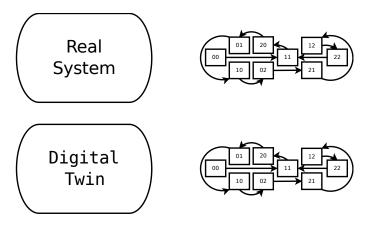


- - E - N

Dynamic system: input/output are state of the system and output becomes the next input.

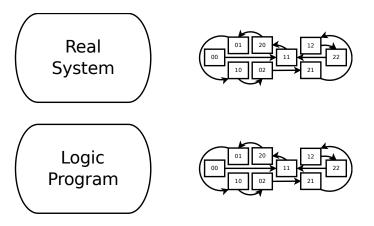


Goal: produce an artificial system with the same behavior as the one observed, i.e. a digital twin.



A B F A B F

Representation: propositional logic programs with annotated atoms encoding multi-valued variables.

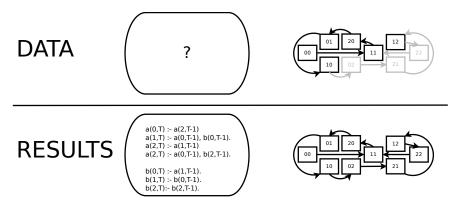


3

A B A A B A

< 🗇 🕨

Method: learn the dynamics of systems from the observations of some of its state transitions.



3

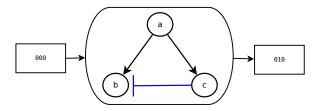
4 / 33

Data: time series of genes expression levels in a organic cell. **Goal:** model genes interactions to <u>understand</u> their influences.

Example (Possible Applications)

- Bioinformatics: Construct gene regulatory networks.
- Robotics: Learn action models from robot observations.

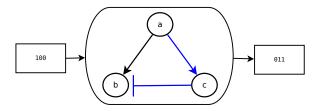
Data: time series of genes expression levels in a organic cell. **Goal:** model genes interactions to <u>understand</u> their influences.



Example (Possible Applications)

- Bioinformatics: Construct gene regulatory networks.
- Robotics: Learn action models from robot observations.

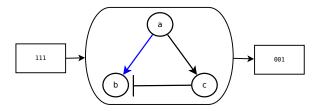
Data: time series of genes expression levels in a organic cell. **Goal:** model genes interactions to <u>understand</u> their influences.



Example (Possible Applications)

- Bioinformatics: Construct gene regulatory networks.
- Robotics: Learn action models from robot observations.

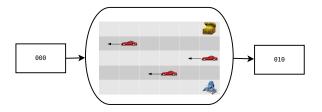
Data: time series of genes expression levels in a organic cell. **Goal:** model genes interactions to <u>understand</u> their influences.



Example (Possible Applications)

- Bioinformatics: Construct gene regulatory networks.
- Robotics: Learn action models from robot observations.

Data: observations of environment evolution according to a robot actions. **Goal:** produce a predictive model of the environment for action planning.



Example (Possible Applications)

- Bioinformatics: Construct gene regulatory networks.
- Robotics: Learn action models from robot observations.

4 E 5 4 E

Semantics

Boolean network transitions differ according to the update semantics used.



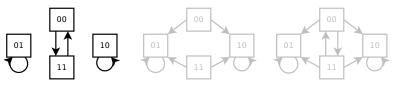
- Synchronous: all variable are updated
- Asynchronous: only one variable is updated
- General: any number of variable can be updated

Ribeiro et al (LS2N, IRISA, NII)

GULA: semantic free dynamics learning

Semantics

Boolean network transitions differ according to the update semantics used.



Synchronous

Asynchronous

General

- Synchronous: all variable are updated
- Asynchronous: only one variable is updated
- General: any number of variable can be updated

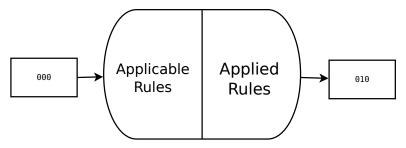
Ribeiro et al (LS2N, IRISA, NII)

GULA: semantic free dynamics learnin

4th September 2018, ILP 6 / 33

What is a semantics?

For those three semantics atleast its about computing the next state by selecting among applicable local rules the ones that will be applied.



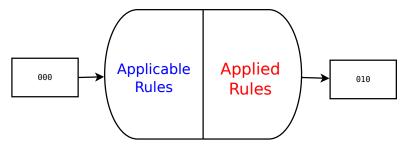
Semantics: what is an applicable rule and what is a valid set of applied rule.

The three semantics differ on the selection but share the same definition of what is an applicable rule.

4 3 5 4 3 5

What is a semantics?

For those three semantics atleast its about computing the next state by selecting among applicable local rules the ones that will be applied.



Semantics: what is an applicable rule and what is a valid set of applied rule.

The three semantics differ on the selection but share the same definition of what is an applicable rule.

4 3 5 4 3 5

What is an applicable rule?

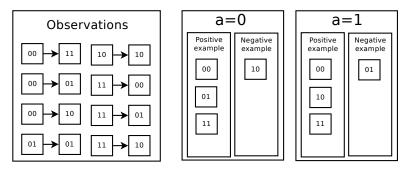
A B A A B A

3

What is an applicable rule? The conditions so that a variable can take a certain value in next state.

12 N 4 12 N

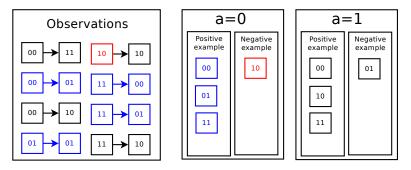
What is an applicable rule? The conditions so that a variable can take a certain value in next state.



Equivalent to a classification problem: for each variable value, what is a typical state where the variable can takes this value in the next state ?

イロト 人間ト イヨト イヨト

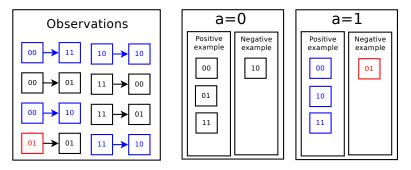
What is an applicable rule? The conditions so that a variable can take a certain value in next state.



Equivalent to a classification problem: for each variable value, what is a typical state where the variable can takes this value in the next state ?

イロト 人間ト イヨト イヨト

What is an applicable rule? The conditions so that a variable can take a certain value in next state.



Equivalent to a classification problem: for each variable value, what is a typical state where the variable can takes this value in the next state ?

イロト 人間ト イヨト イヨト

Outline

Formalization 2

< 行い

æ

Ribeiro et al (LS2N, IRISA, NII) GULA: semantic free dynamics learning 4th September 2018, ILP 10 / 33

イロト イポト イヨト イヨト

Definition (Atoms)

Let $\mathcal{V} = \{v_1, \dots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom : $\mathcal{V} \to \mathbb{N}$ The <u>atoms</u> of $\mathcal{M}VL$ are of the form v^{val} where $v \in \mathcal{V}$ and $val \in [0; \text{dom}(v)]$. The set of such atoms is denoted by $\mathcal{A}_{\text{dom}}^{\mathcal{V}}$ or simply \mathcal{A} .

Definition (Atoms)

Let $\mathcal{V} = \{v_1, \dots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom : $\mathcal{V} \to \mathbb{N}$ The <u>atoms</u> of $\mathcal{M}VL$ are of the form v^{val} where $v \in \mathcal{V}$ and $val \in [\![0; dom(v)]\!]$. The set of such atoms is denoted by $\mathcal{A}_{dom}^{\mathcal{V}}$ or simply \mathcal{A} .

Definition (Rules)

A $\mathcal{M}VL$ <u>rule</u> *R* is defined by:

$$R = \mathbf{v}_0^{\mathsf{val}_0} \leftarrow \mathbf{v}_1^{\mathsf{val}_1} \wedge \cdots \wedge \mathbf{v}_m^{\mathsf{val}_m}$$

where $\forall i \in \llbracket 0; m \rrbracket, v_i^{val_i} \in \mathcal{A}$ are atoms in $\mathcal{M}VL$.

▲冊▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

(1)

Definition (Atoms)

Let $\mathcal{V} = \{v_1, \dots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom : $\mathcal{V} \to \mathbb{N}$ The <u>atoms</u> of $\mathcal{M}VL$ are of the form v^{val} where $v \in \mathcal{V}$ and $val \in [\![0; dom(v)]\!]$. The set of such atoms is denoted by $\mathcal{A}_{dom}^{\mathcal{V}}$ or simply \mathcal{A} .

Definition (Rules)

A $\mathcal{M}VL$ <u>rule</u> *R* is defined by:

$$\mathsf{R} = \mathsf{v}_0^{\mathsf{val}_0} \leftarrow \mathsf{v}_1^{\mathsf{val}_1} \wedge \cdots \wedge \mathsf{v}_m^{\mathsf{val}_m}$$

(1)

where $\forall i \in \llbracket 0; m \rrbracket, v_i^{val_i} \in \mathcal{A}$ are atoms in $\mathcal{M}VL$.

Left-hand side is called the <u>head</u> of R and is denoted $h(R) := v_0^{val_0}$.

Definition (Atoms)

Let $\mathcal{V} = \{v_1, \dots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom : $\mathcal{V} \to \mathbb{N}$ The <u>atoms</u> of $\mathcal{M}VL$ are of the form v^{val} where $v \in \mathcal{V}$ and $val \in [0; dom(v)]$. The set of such atoms is denoted by $\mathcal{A}_{dom}^{\mathcal{V}}$ or simply \mathcal{A} .

Definition (Rules)

A $\mathcal{M}VL$ <u>rule</u> *R* is defined by:

$$\mathsf{R} = \mathsf{v}_0^{\mathsf{val}_0} \leftarrow \mathsf{v}_1^{\mathsf{val}_1} \wedge \cdots \wedge \mathsf{v}_m^{\mathsf{val}_m}$$

(1)

where $\forall i \in \llbracket 0; m \rrbracket, v_i^{\mathsf{val}_i} \in \mathcal{A}$ are atoms in \mathcal{M} VL.

 $var(h(R)) := v_0$ denotes the variable that occurs in h(R).

Definition (Atoms)

Let $\mathcal{V} = \{v_1, \dots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom : $\mathcal{V} \to \mathbb{N}$ The <u>atoms</u> of $\mathcal{M}VL$ are of the form v^{val} where $v \in \mathcal{V}$ and $val \in [\![0; dom(v)]\!]$. The set of such atoms is denoted by $\mathcal{A}_{dom}^{\mathcal{V}}$ or simply \mathcal{A} .

Definition (Rules)

A $\mathcal{M}VL$ <u>rule</u> *R* is defined by:

$$\mathsf{R} = \mathsf{v}_0^{\mathsf{val}_0} \leftarrow \mathsf{v}_1^{\mathsf{val}_1} \wedge \cdots \wedge \mathsf{v}_m^{\mathsf{val}_m}$$

(1)

where $\forall i \in \llbracket 0; m \rrbracket, v_i^{val_i} \in \mathcal{A}$ are atoms in $\mathcal{M}VL$.

Right-hand side is called the <u>body</u> of *R*, written $b(R) := \{v_1^{val_1}, \dots, v_m^{val_m}\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Definition (Atoms)

Let $\mathcal{V} = \{v_1, \dots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom : $\mathcal{V} \to \mathbb{N}$ The <u>atoms</u> of $\mathcal{M}VL$ are of the form v^{val} where $v \in \mathcal{V}$ and $val \in [0; dom(v)]$. The set of such atoms is denoted by $\mathcal{A}_{dom}^{\mathcal{V}}$ or simply \mathcal{A} .

Definition (Rules)

A $\mathcal{M}VL$ <u>rule</u> *R* is defined by:

$$\mathsf{R} = \mathsf{v}_0^{\mathsf{val}_0} \leftarrow \mathsf{v}_1^{\mathsf{val}_1} \wedge \cdots \wedge \mathsf{v}_m^{\mathsf{val}_m}$$

(1)

where $\forall i \in [[0; m]], v_i^{val_i} \in \mathcal{A}$ are atoms in $\mathcal{M}VL$.

A multi-valued logic program (MVLP) is a set of MVL rules.

Rules Properties

<ロ> (日) (日) (日) (日) (日)

Rules Properties

Definition (Rule Domination)

Let R_1 , R_2 be two $\mathcal{M}VL$ rules. R_1 dominates R_2 , written $R_2 \leq R_1$ if $h(R_1) = h(R_2)$ and $b(R_1) \subseteq b(R_2)$.

* E • * E •

Rules Properties

Definition (Rule Domination)

Let R_1 , R_2 be two $\mathcal{M}VL$ rules. R_1 dominates R_2 , written $R_2 \leq R_1$ if $h(R_1) = h(R_2)$ and $b(R_1) \subseteq b(R_2)$.

Proposition (Double domination is equality)

If $R_1 \leq R_2$ and $R_2 \leq R_1$ then $R_1 = R_2$.

Rules with the most general bodies dominate the other rules. These are the rules we want since they cover the most general cases.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Dynamical System Modeling

< A

- ∢ ≣ →

Dynamical System Modeling

Definition (Discrete State)

A discrete state s is a function from \mathcal{V} to \mathbb{N} , i.e., it associates an integer value to each variable in \mathcal{V} .

Definition (Discrete State)

A discrete state s is a function from \mathcal{V} to \mathbb{N} , i.e., it associates an integer value to each variable in \mathcal{V} .

It can be equivalently represented by the set of atoms $\{v^{s(v)} \mid v \in \mathcal{V}\}$ and thus we can use classical set operations on it.

Definition (Discrete State)

A discrete state s is a function from \mathcal{V} to \mathbb{N} , i.e., it associates an integer value to each variable in \mathcal{V} .

It can be equivalently represented by the set of atoms $\{v^{\textit{s}(v)} \mid v \in \mathcal{V}\}$ and thus we can use classical set operations on it.

Definition (Transitions)

We write S to denote the set of all discrete states, and a couple of states $(s, s') \in S^2$ is called a transition.

< A

- ∢ ≣ →

Definition (Rule-state matching)

Let $s \in S$. The MVL rule R matches s, written $R \sqcap s$, if $b(R) \subseteq s$.

When matching a state, a rule can be used to realize a transition.

E 5 4 E

Definition (Rule-state matching)

Let $s \in S$. The MVL rule R matches s, written $R \sqcap s$, if $b(R) \subseteq s$.

When matching a state, a rule can be used to realize a transition.

Definition (Rule realization)

A rule R realizes the transition (s, s'), written $s \xrightarrow{R} s'$, if $R \sqcap s, h(R) \in s'$.

4 1 1 4 1 1 1

Definition (Rule-state matching)

Let $s \in S$. The MVL rule R matches s, written $R \sqcap s$, if $b(R) \subseteq s$.

When matching a state, a rule can be used to realize a transition.

Definition (Rule realization)

A rule R realizes the transition (s, s'), written $s \xrightarrow{R} s'$, if $R \sqcap s, h(R) \in s'$.

Definition (Program realization)

A \mathcal{M} VLP P realizes (s, s'), written $s \xrightarrow{P} s'$, if $\forall v \in \mathcal{V}, \exists R \in P, var(h(R)) = v \land s \xrightarrow{R} s'.$ It realizes $T \subseteq S^2$, written $\xrightarrow{P} T$, if $\forall (s, s') \in T, s \xrightarrow{P} s'.$

- 31

(日) (同) (日) (日) (日)

Desired Properties

In the following, for all sets of transitions $T \subseteq S^2$, we denote: $fst(T) := \{s \in S \mid \exists (s_1, s_2) \in T, s_1 = s\}.$

E + 4 E +

Desired Properties

In the following, for all sets of transitions $T \subseteq S^2$, we denote: $fst(T) := \{s \in S \mid \exists (s_1, s_2) \in T, s_1 = s\}.$

Definition (Conflicts)

A \mathcal{M} VL rule R conflicts with a set of transitions $T \subseteq S^2$ when $\exists s \in \operatorname{fst}(T), (R \sqcap s \land \forall (s, s') \in T, h(R) \notin s').$

글 > - + 글 >

Desired Properties

In the following, for all sets of transitions $T \subseteq S^2$, we denote: $fst(T) := \{s \in S \mid \exists (s_1, s_2) \in T, s_1 = s\}.$

Definition (Conflicts)

A \mathcal{M} VL rule R conflicts with a set of transitions $T \subseteq S^2$ when $\exists s \in \operatorname{fst}(T), (R \sqcap s \land \forall (s, s') \in T, h(R) \notin s').$

Definition (Concurrent rules)

Two \mathcal{M} VL rules R and R' are <u>concurrent</u> when $R \sqcap R' \land \operatorname{var}(h(R)) = \operatorname{var}(h(R')) \land h(R) \neq h(R')$.

A \mathcal{M} VLP P is <u>complete</u> if $\forall s \in \mathcal{S}, \forall v \in \mathcal{V}, \exists R \in P, R \sqcap s \land var(h(R)) = v$.

A \mathcal{M} VLP P is complete if $\forall s \in \mathcal{S}, \forall v \in \mathcal{V}, \exists R \in P, R \sqcap s \land var(h(R)) = v$.

A complete program realize atleast one transition for each state $s \in S$.

A \mathcal{M} VLP P is complete if $\forall s \in \mathcal{S}, \forall v \in \mathcal{V}, \exists R \in P, R \sqcap s \land var(h(R)) = v$.

A complete program realize atleast one transition for each state $s \in S$.

Definition (Consistent program)

A MVLP P is <u>consistent</u> with a set of transitions T if P does not contains any rule R conflicting with T.

4 1 1 4 1 1 1

A \mathcal{M} VLP P is complete if $\forall s \in \mathcal{S}, \forall v \in \mathcal{V}, \exists R \in P, R \sqcap s \land var(h(R)) = v$.

A complete program realize atleast one transition for each state $s \in S$.

Definition (Consistent program)

A MVLP P is <u>consistent</u> with a set of transitions T if P does not contains any rule R conflicting with T.

Let $s \in \text{fst}(T)$, a program consistent with T will only realize the transitions $(s, s') \in T$.

• • = • • = •

- 3

$\mathsf{Optimal}\ \mathcal{M}\mathrm{VLP}$

<ロ> (日) (日) (日) (日) (日)

Optimal $\mathcal{M}\mathrm{VLP}$

Definition (Suitable program)Let $T \subseteq S^2$. A $\underline{MVLP \ P}$ is suitable for T when:• P is consistent with T,Cover no negative example• P realizes T,Cover all positive example• P is completeCover all state space• $\forall R$ not conflicting with T, $\exists R' \in P$ s.t. $R \leq R'$. Cover all hypotheses

< 回 ト < 三 ト < 三 ト

Optimal $\mathcal{M}\mathrm{VLP}$

Definition (Suitable program)Let $T \subseteq S^2$. A $\underline{MVLP P}$ is suitable for \underline{T} when:• P is consistent with T,Cover no negative example• P realizes T,Cover all positive example• P is completeCover all state space• $\forall R$ not conflicting with T, $\exists R' \in P$ s.t. $R \leq R'$. Cover all hypotheses

Definition (Optimal program)

If in addition, $\forall R \in P$, all the rules R' belonging to a MVLP suitable for T are such that $R \leq R'$ implies $R' \leq R$ then P is called <u>optimal</u>.

An optimal program is the set of all rules that are not dominated by any consistent rules. Contains all minimal hypotheses

- 31

・ロト ・四ト ・ヨト ・ヨト

$\mathsf{Optimal}\ \mathcal{M}\mathrm{VLP}$

<ロ> (日) (日) (日) (日) (日)

Optimal $\mathcal{M}\mathrm{VLP}$

Proposition

Let $T \subseteq S^2$. The MVLP optimal for T is unique and denoted $P_{\mathcal{O}}(T)$.

イロト イポト イヨト イヨト

Optimal $\mathcal{M}\mathrm{VLP}$

Proposition

Let $T \subseteq S^2$. The MVLP optimal for T is unique and denoted $P_{\mathcal{O}}(T)$.

Troll mode on: does it works if it is the empty set? :p

< 回 ト < 三 ト < 三 ト

$\mathsf{Optimal}\ \mathcal{M}\mathrm{VLP}$

Proposition

Let $T \subseteq S^2$. The MVLP optimal for T is unique and denoted $P_{\mathcal{O}}(T)$.

Troll mode on: does it works if it is the empty set? :p

Proposition

 $P_{\mathcal{O}}(\emptyset) = \{ \mathbf{v}^{\mathsf{val}} \leftarrow \emptyset \mid \mathbf{v}^{\mathsf{val}} \in \mathcal{A} \}.$

イロト 不得 トイヨト イヨト 二日

Optimal $\mathcal{M}\mathrm{VLP}$

Proposition

Let $T \subseteq S^2$. The MVLP optimal for T is unique and denoted $P_{\mathcal{O}}(T)$.

Troll mode on: does it works if it is the empty set? :p

Proposition

 $P_{\mathcal{O}}(\emptyset) = \{ \mathbf{v}^{\mathsf{val}} \leftarrow \emptyset \mid \mathbf{v}^{\mathsf{val}} \in \mathcal{A} \}.$

Yeah ! And this property is the starting point of the learning algorithm.

Optimal $\mathcal{M}VLP$

Proposition

Let $T \subseteq S^2$. The MVLP optimal for T is unique and denoted $P_{\mathcal{O}}(T)$.

Troll mode on: does it works if it is the empty set? :p

Proposition

$$P_{\mathcal{O}}(\emptyset) = \{ \mathbf{v}^{\mathsf{val}} \leftarrow \emptyset \mid \mathbf{v}^{\mathsf{val}} \in \mathcal{A} \}.$$

Yeah ! And this property is the starting point of the learning algorithm.

Proposition

Let $T \subseteq S^2$. If P is a $\mathcal{M}VLP$ suitable for T. then $P_{\mathcal{O}}(T) = \{ R \in P \mid \forall R' \in P, R \leq R' \implies R' \leq R \}$

$\mathsf{Optimal}\ \mathcal{M}\mathrm{VLP}$

Proposition

Let $T \subseteq S^2$. The MVLP optimal for T is unique and denoted $P_{\mathcal{O}}(T)$.

Troll mode on: does it works if it is the empty set? :p

Proposition

$$P_{\mathcal{O}}(\emptyset) = \{ \mathbf{v}^{\mathsf{val}} \leftarrow \emptyset \mid \mathbf{v}^{\mathsf{val}} \in \mathcal{A} \}.$$

Yeah ! And this property is the starting point of the learning algorithm.

Proposition

Let $T \subseteq S^2$. If P is a $\mathcal{M}VLP$ suitable for T, then $P_{\mathcal{O}}(T) = \{R \in P \mid \forall R' \in P, R \leq R' \implies R' \leq R\}$

We can obtain the optimal program from any suitable program by simply removing the dominated rules.

Ribeiro et al (LS2N, IRISA, NII)

GULA: semantic free dynamics learni

Outline

2 Formalization

3 Learning Process

4 Semantics

(3) (3) (3)

< 行

<ロ> (日) (日) (日) (日) (日)

How to make a minimal modifications of a $\mathcal{M}VLP$ in order to be suitable with a new set of transitions?

∃ ► < ∃ ►</p>

How to make a minimal modifications of a $\mathcal{M}\mathrm{VLP}$ in order to be suitable with a new set of transitions?

Definition (Rule least specialization)

Let *R* be a MVL rule and $s \in S$ such that $R \sqcap s$. The least specialization of *R* by *s* is:

 $L_{\rm spe}(R,s) := \{h(R) \leftarrow b(R) \cup \{{\rm v}^{\mathsf{val}}\} \mid {\rm v}^{\mathsf{val}} \in \mathcal{A} \land {\rm v}^{\mathsf{val}} \not\in s \land \forall \mathsf{val}' \in \mathbb{N}, {\rm v}^{\mathsf{val}'} \not\in b(R)\}.$

A B M A B M

How to make a minimal modifications of a $\mathcal{M}\mathrm{VLP}$ in order to be suitable with a new set of transitions?

Definition (Rule least specialization)

Let *R* be a MVL rule and $s \in S$ such that $R \sqcap s$. The least specialization of *R* by *s* is:

 $L_{\rm spe}(R,s) := \{h(R) \leftarrow b(R) \cup \{{\rm v}^{\mathsf{val}}\} \mid {\rm v}^{\mathsf{val}} \in \mathcal{A} \land {\rm v}^{\mathsf{val}} \not\in s \land \forall \mathsf{val}' \in \mathbb{N}, {\rm v}^{\mathsf{val}'} \not\in b(R) \}.$

Thus, a $\mathcal{M}\mathrm{VLP}$ can be revised to only realizes given transitions from s.

A B < A B <</p>

How to make a minimal modifications of a $\mathcal{M}VLP$ in order to be suitable with a new set of transitions?

Definition (Rule least specialization)

Let *R* be a MVL rule and $s \in S$ such that $R \sqcap s$. The least specialization of *R* by *s* is:

 $L_{\rm spe}(R,s) := \{h(R) \leftarrow b(R) \cup \{{\rm v}^{\mathsf{val}}\} \mid {\rm v}^{\mathsf{val}} \in \mathcal{A} \land {\rm v}^{\mathsf{val}} \not\in s \land \forall \mathsf{val}' \in \mathbb{N}, {\rm v}^{\mathsf{val}'} \not\in b(R) \}.$

Thus, a $\mathcal{M}\mathrm{VLP}$ can be revised to only realizes given transitions from s.

Definition (Program least revision)

Let *P* be a \mathcal{M} VLP, $s \in S$ and $T \subseteq S^2$ such that $fst(T) = \{s\}$. Let $R_P := \{R \in P \mid R \text{ conflicts with } T\}$. The least revision of *P* by *T* is $L_{rev}(P, T) := (P \setminus R_P) \cup \bigcup_{R \in R_P} L_{spe}(R, s)$.

- 3

<ロ> (日) (日) (日) (日) (日)

Guess what? Least revision can conserves suitability :)

A B A A B A

- 一司

Guess what? Least revision can conserves suitability :)

Theorem

Let $s \in S$ and $T, T' \subseteq S^2$ such that $|fst(T')| = 1 \land fst(T) \cap fst(T') = \emptyset$. $L_{rev}(P_{\mathcal{O}}(T), T')$ is a $\mathcal{M}VLP$ suitable for $T \cup T'$.

A B M A B M

Guess what? Least revision can conserves suitability :)

Theorem

Let $s \in S$ and $T, T' \subseteq S^2$ such that $|fst(T')| = 1 \land fst(T) \cap fst(T') = \emptyset$. $L_{rev}(P_{\mathcal{O}}(T), T')$ is a $\mathcal{M}VLP$ suitable for $T \cup T'$.

In association with previous results it gives a method to iteratively compute $P_{\mathcal{O}}(\mathcal{T})$ for any $\mathcal{T} \subseteq S^2$, starting from $P_{\mathcal{O}}(\emptyset)$.

GULA: General Usage LFIT Algorithm

< 回 ト < 三 ト < 三 ト

GULA: General Usage LFIT Algorithm

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$.

• • = • • = •

GULA: General Usage LFIT Algorithm

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

< 回 ト < 三 ト < 三 ト

- 3

GULA:

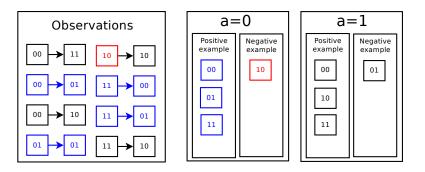
INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

• Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

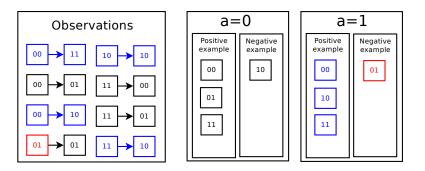
• Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$



GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

• Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$



GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$
 - ▶ Extract each rule *R* of $P_{v^{val}}$ that matches *s*: $M_{v^{val}} := \{R \in P \mid b(R) \subseteq s\}, P_{v^{val}} := P_{v^{val}} \setminus M_{v^{val}}.$

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$
 - Extract each rule R of $P_{v^{val}}$ that matches s:

$$M_{\mathbf{v}^{\mathsf{val}}} := \{ R \in P \mid b(R) \subseteq s \}, P_{\mathbf{v}^{\mathsf{val}}} := P_{\mathbf{v}^{\mathsf{val}}} \setminus M_{\mathbf{v}^{\mathsf{val}}}.$$

• For each rule
$$R \in M_{v^{val}}$$

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$
 - Extract each rule R of $P_{v^{val}}$ that matches s:
 - $M_{\mathbf{v}^{\mathsf{val}}} := \{ R \in P \mid b(R) \subseteq s \}, P_{\mathbf{v}^{\mathsf{val}}} := P_{\mathbf{v}^{\mathsf{val}}} \setminus M_{\mathbf{v}^{\mathsf{val}}}.$
 - For each rule $R \in M_{v^{val}}$
 - * Compute its least specialization $P' = L_{spe}(R, s)$.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● � � �

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$
 - Extract each rule R of $P_{v^{val}}$ that matches s:
 - $M_{\mathbf{v}^{\mathsf{val}}} := \{ R \in P \mid b(R) \subseteq s \}, P_{\mathbf{v}^{\mathsf{val}}} := P_{\mathbf{v}^{\mathsf{val}}} \setminus M_{\mathbf{v}^{\mathsf{val}}}.$
 - For each rule $R \in M_{v^{val}}$
 - * Compute its least specialization $P' = L_{spe}(R, s)$.
 - * Remove all the rules in P' dominated by a rule in $P_{v^{val}}$.

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$
 - Extract each rule R of $P_{v^{val}}$ that matches s:

$$M_{\mathbf{v}^{\mathsf{val}}} := \{ R \in P \mid b(R) \subseteq s \}, P_{\mathbf{v}^{\mathsf{val}}} := P_{\mathbf{v}^{\mathsf{val}}} \setminus M_{\mathbf{v}^{\mathsf{val}}}.$$

- For each rule $R \in M_{v^{val}}$
 - * Compute its least specialization $P' = L_{spe}(R, s)$.
 - * Remove all the rules in P' dominated by a rule in $P_{v^{val}}$.
 - * Remove all the rules in $P_{v^{val}}$ dominated by a rule in P'.

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{val}}$
 - Extract each rule R of $P_{v^{val}}$ that matches s:

$$M_{\mathbf{v}^{\mathsf{val}}} := \{ R \in P \mid b(R) \subseteq s \}, P_{\mathbf{v}^{\mathsf{val}}} := P_{\mathbf{v}^{\mathsf{val}}} \setminus M_{\mathbf{v}^{\mathsf{val}}}.$$

- For each rule $R \in M_{v^{val}}$
 - * Compute its least specialization $P' = L_{spe}(R, s)$.
 - * Remove all the rules in P' dominated by a rule in $P_{v^{val}}$.
 - * Remove all the rules in $P_{v^{val}}$ dominated by a rule in P'.
 - * Add all remaining rules in P' to $P_{v^{val}}$.

▲冊▶ ▲目▶ ▲目▶ 目目 - のへで

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$
 - Extract each rule R of $P_{v^{val}}$ that matches s:

$$M_{\mathbf{v}^{\mathsf{val}}} := \{ R \in P \mid b(R) \subseteq s \}, P_{\mathbf{v}^{\mathsf{val}}} := P_{\mathbf{v}^{\mathsf{val}}} \setminus M_{\mathbf{v}^{\mathsf{val}}}.$$

- For each rule $R \in M_{v^{val}}$
 - * Compute its least specialization $P' = L_{spe}(R, s)$.
 - * Remove all the rules in P' dominated by a rule in $P_{v^{val}}$.
 - * Remove all the rules in $P_{v^{val}}$ dominated by a rule in P'.
 - * Add all remaining rules in P' to $P_{v^{val}}$.
- $P := P \cup P_{v^{val}}$

▲冊▶ ▲目▶ ▲目▶ 目目 - のへで

GULA:

INPUT: a set of atoms \mathcal{A} and a set of transitions $\mathcal{T} \subseteq \mathcal{S}^2$. For each atom $v^{val} \in \mathcal{A}$

- Extract all states from which no transition to v^{val} exist: $Neg_{v^{val}} := \{s \mid \nexists(s, s') \in T, v^{val} \in s'\}$
- Initialize $P_{\mathbf{v}^{val}} := \{ \mathbf{v}^{val} \leftarrow \emptyset \}$
- For each state $s \in \mathit{Neg}_{v^{\mathit{val}}}$
 - Extract each rule R of $P_{v^{val}}$ that matches s:

$$M_{\mathbf{v}^{\mathsf{val}}} := \{ R \in P \mid b(R) \subseteq s \}, P_{\mathbf{v}^{\mathsf{val}}} := P_{\mathbf{v}^{\mathsf{val}}} \setminus M_{\mathbf{v}^{\mathsf{val}}}.$$

- For each rule $R \in M_{v^{val}}$
 - * Compute its least specialization $P' = L_{spe}(R, s)$.
 - * Remove all the rules in P' dominated by a rule in $P_{v^{val}}$.
 - * Remove all the rules in $P_{v^{val}}$ dominated by a rule in P'.
 - * Add all remaining rules in P' to $P_{v^{val}}$.
- $P := P \cup P_{v^{val}}$

OUTPUT:
$$P_{\mathcal{O}}(T) := P$$

▲冊▶ ▲目▶ ▲目▶ 目目 - のへで

Outline

1 Motivations

- 2 Formalization
- 3 Learning Process

< 回 > < 三 > < 三 >

Where is the semantics gone?

< 回 ト < 三 ト < 三 ト

Where is the semantics gone?

The formalization of $\mathcal{M}\mathrm{VLP}$ is independant of the semantics that produced its transitions.

Where is the semantics gone?

The formalization of $\mathcal{M}VLP$ is independant of the semantics that produced its transitions.

Definition (Semantics)

Let $\mathcal{A}_{dom}^{\mathcal{V}}$ be a set of atoms and \mathcal{S} the corresponding set of states. A <u>semantics</u> (on $\mathcal{A}_{dom}^{\mathcal{V}}$) is a function that associates, to each complete $\mathcal{M}VLP$ P, a set of transitions $T \subseteq \mathcal{S}^2$ so that: $fst(T) = \mathcal{S}$. Equivalently, a semantics can be seen as a function of $(c-\mathcal{M}VLP \rightarrow (\mathcal{S} \rightarrow \wp(\mathcal{S}) \setminus \emptyset))$ where $c-\mathcal{M}VLP$ is the set of complete $\mathcal{M}VLPs$ and \wp is the power set operator.

• • B • • B • B

The synchronous semantics \mathcal{T}_{syn} is defined by:

 $\mathcal{T}_{syn}: P \mapsto \{(s,s') \in \mathcal{S}^2 \mid s' \subseteq \{h(R) \in \mathcal{A} \mid R \in P, R \sqcap s\}\}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

The synchronous semantics \mathcal{T}_{syn} is defined by:

 $\mathcal{T}_{syn}: P \mapsto \{(s,s') \in \mathcal{S}^2 \mid s' \subseteq \{h(R) \in \mathcal{A} \mid R \in P, R \sqcap s\}\}$

Definition (Asynchronous semantics)

The asynchronous semantics \mathcal{T}_{asyn} is defined by:

$$\mathcal{T}_{asyn}: P \mapsto \{(s, s \setminus \{h(R)\}) \in \mathcal{S}^2 \mid R \in P \land R \sqcap s \land h(R) \notin s\} \ \cup \{(s, s) \in \mathcal{S}^2 \mid \forall R \in P, R \sqcap s \implies h(R) \in s\}.$$

▲帰▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

The synchronous semantics \mathcal{T}_{syn} is defined by:

 $\mathcal{T}_{syn}: P \mapsto \{(s,s') \in \mathcal{S}^2 \mid s' \subseteq \{h(R) \in \mathcal{A} \mid R \in P, R \sqcap s\}\}$

Definition (Asynchronous semantics)

The asynchronous semantics \mathcal{T}_{asyn} is defined by:

$$\mathcal{T}_{asyn}: P \mapsto \{(s, s \setminus \{h(R)\}) \in \mathcal{S}^2 \mid R \in P \land R \sqcap s \land h(R) \notin s\} \ \cup \{(s, s) \in \mathcal{S}^2 \mid \forall R \in P, R \sqcap s \implies h(R) \in s\}.$$

Definition (General semantics)

The general semantics \mathcal{T}_{gen} is defined by:

$$\mathcal{T}_{gen}: P \mapsto \{(s, s \setminus r) \in \mathcal{S}^2 \mid r \subseteq \{h(R) \in \mathcal{A} \mid R \in P \land R \sqcap s\} \land \\ \forall v_1^{\mathsf{val}_1}, v_2^{\mathsf{val}_2} \in r, v_1 = v_2 \implies \mathsf{val}_1 = \mathsf{val}_2\}.$$

The synchronous semantics \mathcal{T}_{syn} is defined by:

 $\mathcal{T}_{syn}: P \mapsto \{(s,s') \in \mathcal{S}^2 \mid s' \subseteq \{h(R) \in \mathcal{A} \mid R \in P, R \sqcap s\}\}$

Definition (Asynchronous semantics)

The asynchronous semantics \mathcal{T}_{asyn} is defined by:

 $\mathcal{T}_{asyn}: P \mapsto \{(s, s \setminus \{h(R)\}) \in \mathcal{S}^2 \mid R \in P \land R \sqcap s \land h(R) \notin s\} \\ \cup \{(s, s) \in \mathcal{S}^2 \mid \forall R \in P, R \sqcap s \implies h(R) \in s\}.$

Definition (General semantics)

The general semantics \mathcal{T}_{gen} is defined by:

$$\mathcal{T}_{gen}: P \mapsto \{(s, s || r) \in \mathcal{S}^2 \mid r \subseteq \{h(R) \in \mathcal{A} \mid R \in P \land R \sqcap s\} \land \\ \forall v_1^{\mathsf{val}_1}, v_2^{\mathsf{val}_2} \in r, v_1 = v_2 \implies \mathsf{val}_1 = \mathsf{val}_2\}.$$

Semantic free modeling

Finally, we can state that the definitions and method developed in the previous section are independent of those three semantics.

Theorem (Semantics-free correctness) Let P be a MVLP such that P is complete.

•
$$\mathcal{T}_{syn}(P) = \mathcal{T}_{syn}(P_{\mathcal{O}}(\mathcal{T}_{syn}(P))),$$

•
$$\mathcal{T}_{asyn}(P) = \mathcal{T}_{asyn}(P_{\mathcal{O}}(\mathcal{T}_{asyn}(P))),$$

•
$$\mathcal{T}_{gen}(P) = \mathcal{T}_{gen}(P_{\mathcal{O}}(\mathcal{T}_{gen}(P))).$$

Semantic free modeling

Finally, we can state that the definitions and method developed in the previous section are independent of those three semantics.

Theorem (Semantics-free correctness)

Let P be a $\mathcal{M}VLP$ such that P is complete.

•
$$\mathcal{T}_{syn}(P) = \mathcal{T}_{syn}(P_{\mathcal{O}}(\mathcal{T}_{syn}(P))),$$

•
$$\mathcal{T}_{asyn}(P) = \mathcal{T}_{asyn}(P_{\mathcal{O}}(\mathcal{T}_{asyn}(P))),$$

•
$$\mathcal{T}_{gen}(P) = \mathcal{T}_{gen}(P_{\mathcal{O}}(\mathcal{T}_{gen}(P))).$$

Whatever the semantic which produced T, given the optimal MVLP of T we can reproduce exactly T with the same semantic.

• • = • • = •

- 3

And **GULA** can learn such an optimal $\mathcal{M}VLP$ from \mathcal{T} .

Theorem (GULA Termination, soundness, completeness, optimality)

Let $T \subseteq S^2$. The call **GULA**(A, T) terminates and **GULA**(A, T) = $P_{\mathcal{O}}(T)$.

And **GULA** can learn such an optimal $\mathcal{M}VLP$ from \mathcal{T} .

Theorem (GULA Termination, soundness, completeness, optimality)

Let $T \subseteq S^2$. The call **GULA**(A, T) terminates and **GULA**(A, T) = $P_{\mathcal{O}}(T)$.

Making the algorithm semantic-free atleast for those three semantics.

(B)

And **GULA** can learn such an optimal $\mathcal{M}VLP$ from \mathcal{T} .

Theorem (GULA Termination, soundness, completeness, optimality)

Let $T \subseteq S^2$. The call **GULA**(A, T) terminates and **GULA**(A, T) = $P_{\mathcal{O}}(T)$.

Making the algorithm semantic-free atleast for those three semantics.

Theorem (Semantic-freeness)

Let P be a $\mathcal{M}VLP$ such that P is complete.

•
$$\mathbf{GULA}(\mathcal{A}, \mathcal{T}_{syn}(P)) = P_{\mathcal{O}}(\mathcal{T}_{syn}(P))$$

•
$$\mathbf{GULA}(\mathcal{A}, \mathcal{T}_{asyn}(P)) = P_{\mathcal{O}}(\mathcal{T}_{asyn}(P))$$

•
$$\mathbf{GULA}(\mathcal{A}, \mathcal{T}_{gen}(P)) = P_{\mathcal{O}}(\mathcal{T}_{gen}(P))$$

And **GULA** can learn such an optimal $\mathcal{M}VLP$ from \mathcal{T} .

Theorem (GULA Termination, soundness, completeness, optimality)

Let $T \subseteq S^2$. The call **GULA**(A, T) terminates and **GULA**(A, T) = $P_{\mathcal{O}}(T)$.

Making the algorithm semantic-free atleast for those three semantics.

Theorem (Semantic-freeness)

Let P be a $\mathcal{M}VLP$ such that P is complete.

- $\mathbf{GULA}(\mathcal{A}, \mathcal{T}_{syn}(P)) = P_{\mathcal{O}}(\mathcal{T}_{syn}(P))$
- $\mathbf{GULA}(\mathcal{A}, \mathcal{T}_{asyn}(P)) = P_{\mathcal{O}}(\mathcal{T}_{asyn}(P))$
- $\mathbf{GULA}(\mathcal{A}, \mathcal{T}_{gen}(P)) = P_{\mathcal{O}}(\mathcal{T}_{gen}(P))$

Victory! In theory, but how does it scale in practice?

Outline

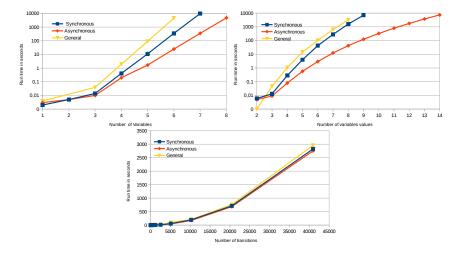
< 行

Evaluation

Theorem (GULA Complexity)

Let $T \subseteq S^2$ be a set of transitions, $n := |\mathcal{V}|$ be the number of variables of the system and $d := \max(\operatorname{dom}(\mathcal{V}))$ be the maximal number of values of its variables. The worst-case time complexity of **GULA** when learning from T belongs to $\mathcal{O}(|T|^2 + 2n^3d^{2n+1} + 2n^2d^n)$ and its worst-case memory use belongs to $\mathcal{O}(d^{2n} + 2d^n + nd^{n+2})$.

Evaluation



Evaluation of **GULA**'s scalability w.r.t. number of variables (top left), number of variables values (top right) and number of input transitions (bottom).

Ribeiro et al (LS2N, IRISA, NII)

э

< 回 > < 三 > < 三 >

Evaluation

Semantics	Mammalian (10)	Fission (10)	Budding (12)	Arabidopsis (15)
Synchronous	1.84s / 1,024	1.55s / 1,024	34.48s / 4,096	2,066s / 32,768
Asynchronous	19.88s / 4,273	19.18s / 4, 217	523s / 19,876	T.O. / 213, 127
General	928s / 34, 487	1,220s / 29,753	T.O. / 261, 366	T.O. / > 500,000

Run time of **GULA** (run time in seconds / number of transitions as input) for Boolean network benchmarks up to 15 nodes for the three semantics.

<ロ> (日) (日) (日) (日) (日)

Previous works

Ribeiro et al (LS2N, IRISA, NII) GULA: semantic free dynamics learning 4th September 2018, ILP 32 / 33

<ロ> (日) (日) (日) (日) (日)

Previous works

• Synchronous deterministic

A B A A B A

- 一司

æ

Previous works

- Synchronous deterministic
- Markov(k) systems

∃ ► < ∃</p>

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

• Synchronous non-deterministic

같아. 김 같

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

- Synchronous non-deterministic
- Asynchronous

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

- Synchronous non-deterministic
- Asynchronous
- generalized

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

- Synchronous non-deterministic
- Asynchronous
- generalized

Ongoing

(B)

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

- Synchronous non-deterministic
- Asynchronous
- generalized

Ongoing

• Improve implementation + approximation

∃ → (∃ →

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

- Synchronous non-deterministic
- Asynchronous
- generalized

Ongoing

- Improve implementation + approximation
- Apply to learn construction network

∃ → (∃ →

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

- Synchronous non-deterministic
- Asynchronous
- generalized

Ongoing

- Improve implementation + approximation
- Apply to learn construction network
- Interface with MetaGol for learning semantics too

Previous works

- Synchronous deterministic
- Markov(k) systems
- Synchronous non-deterministic (no minimality)
- continuous valued systems

New contribution

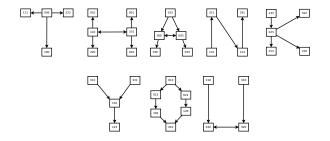
- Synchronous non-deterministic
- Asynchronous
- generalized

Ongoing

- Improve implementation + approximation
- Apply to learn construction network
- Interface with MetaGol for learning semantics too
- One algorithm to learn them all

Ribeiro et al (LS2N, IRISA, NII)

GULA: semantic free dynamics learnin



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで