September 2018

#### Imperial College London

# Tensor-Based Abduction in Horn Propositional Programs

<u>Yaniv Aspis</u>, Krysia Broda, Alessandra Russo

Department of Computing, Imperial College London

{yaniv.aspis17,k.broda,a.russo}@imperial.ac.uk

## Why Linear Algebra?

• Al software is moving towards GPU-based solutions

Optimized for matrix/tensor multiplication

Highly-Parallel computations

Develop algorithms for GPU

# Abduction

Logical Inference through Explanations

 $\langle P, g, Ab \rangle$ 

- Assume P is a Horn Logic Program
- Observation g
- Find  $\Delta \subseteq Ab$  such that  $g \in LHM(P \cup \Delta)$
- $P \cup \Delta$  is consistent

#### Background: Embedding Atoms<sup>[1]</sup>

 $\vec{v}_g = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$  $\vec{v}_{\perp} = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$  $g \leftarrow p \land q$  $p \leftarrow q$  $ec{v}_{\{g,q\}} = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$  $\vec{v}_p = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$  $q \leftarrow$  $\leftarrow g$  $\vec{v}_{\mathsf{T}} = egin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$  $\vec{v}_q = \begin{bmatrix} 0\\0\\0\\0\\0\end{bmatrix}$ 

1. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs. In: KSEM. Lecture Notes in Computer Science, vol. 10412, pp. 520-533. Springer (2017)

### Background: Embedding Programs<sup>[1]</sup>

Immediate Consequence via matrix multiplication:

$$J = T_P(I) \cup I \quad \Leftrightarrow \quad \vec{v}_J = H_1(D^P \cdot \vec{v}_I) \qquad H_1(x) = \begin{cases} 0, & x < 1\\ 1, & x \ge 1 \end{cases}$$

1. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs. In: KSEM. Lecture Notes in Computer Science, vol. 10412, pp. 520-533. Springer (2017)

### Abduction - Main Idea

Invert implications:



Potential solutions:  $\{\{p, q\}, \{q\}, \{t\}, \{g\}\}\}$ 

# Tensor Embedding



## **Frontal Slices**



## Abductive Step



 $\{g\} \quad \Rightarrow \quad \{\{p,q\},\{q\},\{t\},\{g\}\}\}$ 

| $a \leftarrow n \land a$ | So far: | Γ0 | 0 | 0 | ר0 | T |
|--------------------------|---------|----|---|---|----|---|
| $9 \cdot p \wedge q$     |         | 1  | 1 | 1 | 1  | Т |
| $g \leftarrow q$         |         | 0  | 0 | 0 | 1  | g |
| $a \leftarrow t$         |         | 1  | 0 | 0 | 0  | p |
| · +                      |         | 1  | 1 | 0 | 0  | q |
| $\leftarrow \iota$       |         | LO | 0 | 1 | 0  | t |

#### Idea: Compute $LHM(P \cup \Delta)$ for each column







Remove inconsistencies, duplicates, and continue to Abductive Step...

## Abducibles

•  $\Delta \subseteq Ab$  if and only if:

$$\vec{v}_{\Delta} \times \vec{v}_{Ab} = \vec{v}_{\Delta}$$

- Post-Filtering
- If Abducibles are not defined, then  $\Delta \subseteq Ab$  implies  $H_1(A^P \times_2 \vec{v}_{\Delta}) = \vec{v}_{\Delta}$  after duplicates are removed (Filter during run)

# Discussion and Future Work

- Proof of correctness has been completed
- An unoptimised implementation has been made

Future Work:

- Clauses with negation
- First-Order Predicate Logic
- Optimisation and Scalability Testing

# **Tensor Multiplication**



# Multiple Definitions

Introduce auxiliary variables: