
Tensor-Based Abduction

in

Horn Propositional Programs

Yaniv Aspis, Krysia Broda, Alessandra Russo

September 2018

Department of Computing, Imperial College London

{yaniv.aspis17,k.broda,a.russo}@imperial.ac.uk

Why Linear Algebra?

• AI software is moving towards GPU-based solutions

• Optimized for matrix/tensor multiplication

• Highly-Parallel computations

• Develop algorithms for GPU

Abduction
• Logical Inference through Explanations

𝑃, 𝑔, 𝐴𝑏

• Assume 𝑃 is a Horn Logic Program

• Observation 𝑔

• Find Δ ⊆ 𝐴𝑏 such that 𝑔 ∈ 𝐿𝐻𝑀(𝑃 ∪ Δ)

• 𝑃 ∪ Δ is consistent

Background: Embedding Atoms[1]

𝑔 ← 𝑝 ∧ 𝑞
𝑝 ← 𝑞
𝑞 ←
 ← 𝑔

𝑣 𝑔 =

0
0
1
0
0

𝑣 𝑝 =

0
0
0
1
0

𝑣 𝑞 =

0
0
0
0
1

𝑣 ⊥ =

1
0
0
0
0

𝑣 ⊤ =

0
1
0
0
0

𝑣 𝑔,𝑞 =

0
1
1
0
1

1. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs. In: KSEM. Lecture
Notes in Computer Science, vol. 10412, pp. 520-533. Springer (2017)

Background: Embedding Programs[1]

𝑔 ← 𝑝 ∧ 𝑞
𝑝 ← 𝑞
𝑞 ←
 ← 𝑔

𝐷𝑃 =

1 0 1 0 0
1 1 1 1 1

1 0 1
1

2

1

2
1 0 0 1 1
1 1 0 0 1

⊥ ⊤ 𝑔 𝑝 𝑞

⊥
⊤

𝑔

𝑝

𝑞

𝐽 = 𝑇𝑃 𝐼 ∪ 𝐼 ⇔ 𝑣 𝐽 = 𝐻1 𝐷𝑃 ⋅ 𝑣 𝐼 𝐻1 𝑥 =
0, 𝑥 < 1
 1, 𝑥 ≥ 1

Immediate Consequence via matrix multiplication:

1. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs. In: KSEM. Lecture
Notes in Computer Science, vol. 10412, pp. 520-533. Springer (2017)

Invert implications:

𝑔 ← 𝑝 ∧ 𝑞
𝑔 ← 𝑞
𝑔 ← 𝑡

Abduction - Main Idea

𝑔

𝑝, 𝑞

𝑞

𝑡

𝑝, 𝑞 , 𝑞 , 𝑡 , 𝑔 Potential solutions:

Tensor Embedding

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

⊥ ⊤ 𝑔 𝑝 𝑞 𝑡

⊥
⊤
𝑔
𝑝
𝑞
𝑡

𝑔 → 𝑝 ∧ 𝑞

𝐴∷1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

⊥
⊤
𝑔
𝑝
𝑞
𝑡

𝑔 → 𝑝 ∧ 𝑞

𝐴∷2 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

⊥
⊤
𝑔
𝑝
𝑞
𝑡

𝑔 → 𝑞

𝐴∷3 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1

⊥
⊤
𝑔
𝑝
𝑞
𝑡

𝑔 → 𝑡

𝐴∷4 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⊥
⊤
𝑔
𝑝
𝑞
𝑡

Keep 𝑔

Frontal Slices

𝐴∷𝑘 Third-Order
Tensor 𝐴

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

Abductive Step

𝐻1 𝐴 ×2

0
1
1
0
0
0

 =

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

⊥
⊤
𝑔
𝑝
𝑞
𝑡

𝑔 ⇒ 𝑝, 𝑞 , 𝑞 , 𝑡 , 𝑔

Inconsistencies

𝑔 ← 𝑝 ∧ 𝑞
𝑔 ← 𝑞
𝑔 ← 𝑡
 ← 𝑡

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 So far:

Idea: Compute 𝐿𝐻𝑀(𝑃 ∪ Δ) for each column

⊥
⊤
𝑔
𝑝
𝑞
𝑡

Inconsistencies

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 ⇒

0 0 1 0
1 1 1 1
1 1 1 1
1 0 1 0
1 1 1 0
0 0 1 0

𝐿𝐻𝑀

Inconsistencies

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 ⇒

0 0 1 0
1 1 1 1
1 1 1 1
1 0 1 0
1 1 1 0
0 0 1 0

𝐿𝐻𝑀

Inconsistent!

Inconsistencies

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 ⇒

0 0 1 0
1 1 1 1
1 1 1 1
1 0 1 0
1 1 1 0
0 0 1 0

𝐿𝐻𝑀

Inconsistent!

Remove inconsistencies, duplicates, and continue to
Abductive Step…

Abducibles
• Δ ⊆ 𝐴𝑏 if and only if:

𝑣 Δ × 𝑣 𝐴𝑏 = 𝑣 Δ

• Post-Filtering

• If Abducibles are not defined, then Δ ⊆ 𝐴𝑏 implies
𝐻1 𝐴𝑃 ×2 𝑣 Δ = 𝑣 Δ after duplicates are removed

(Filter during run)

Discussion and Future Work

• Clauses with negation

• First-Order Predicate Logic

• Optimisation and Scalability Testing

Future Work:

• Proof of correctness has been completed

• An unoptimised implementation has been made

Tensor Multiplication

× = × =

=
Flatten

Multiple Definitions

𝑔 ← 𝑝 ∧ 𝑞
𝑔 ← 𝑝 ∧ 𝑟

𝐻

1 0 0 0 0 0
1 1 1 1 1 1

1 0 0
1

2

1

2

1

2
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⋅

0
1
0
0
1
1

=

0
1
1
0
0
0

Introduce auxiliary variables:

𝑔1 ← 𝑝 ∧ 𝑞
𝑔2 ← 𝑝 ∧ 𝑟

𝑔 ← 𝑔1
𝑔 ← 𝑔2

⊥

⊤
𝑔

𝑝
𝑞
𝑟

