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Why Linear Algebra? 

• AI software is moving towards GPU-based solutions 

 

• Optimized for matrix/tensor multiplication 

 

• Highly-Parallel computations 

 

• Develop algorithms for GPU 



Abduction 
• Logical Inference through Explanations 

 

𝑃, 𝑔, 𝐴𝑏  
 

• Assume 𝑃 is a Horn Logic Program 

• Observation 𝑔 

• Find Δ ⊆ 𝐴𝑏 such that 𝑔 ∈ 𝐿𝐻𝑀(𝑃 ∪ Δ) 

• 𝑃 ∪ Δ is consistent 



Background: Embedding Atoms[1] 

𝑔 ← 𝑝 ∧  𝑞 
𝑝 ← 𝑞 
𝑞 ← 
    ← 𝑔  

𝑣 𝑔 =

0
0
1
0
0

 

𝑣 𝑝 =

0
0
0
1
0

 

𝑣 𝑞 =

0
0
0
0
1

 

𝑣 ⊥ =

1
0
0
0
0

 

𝑣 ⊤ =

0
1
0
0
0

 

𝑣 𝑔,𝑞 =

0
1
1
0
1

 

1. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs. In: KSEM. Lecture 
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Background: Embedding Programs[1] 

𝑔 ← 𝑝 ∧  𝑞 
𝑝 ← 𝑞 
𝑞 ← 
    ← 𝑔  

𝐷𝑃 =

1 0 1 0 0
1 1 1 1 1

1 0 1
1

2

1

2
1 0 0 1 1
1 1 0 0 1

 

⊥ ⊤ 𝑔 𝑝 𝑞 

⊥ 
⊤ 

𝑔 

𝑝 

𝑞 

𝐽 =  𝑇𝑃 𝐼 ∪ 𝐼   ⇔    𝑣 𝐽 = 𝐻1 𝐷𝑃 ⋅ 𝑣 𝐼  𝐻1 𝑥 =  
0, 𝑥 < 1
 1, 𝑥 ≥ 1

 

Immediate Consequence via matrix multiplication: 

1. Sakama, C., Inoue, K., Sato, T.: Linear Algebraic Characterization of Logic Programs. In: KSEM. Lecture 
Notes in Computer Science, vol. 10412, pp. 520-533. Springer (2017) 
 



Invert implications: 

𝑔 ← 𝑝 ∧  𝑞 
𝑔 ← 𝑞 
𝑔 ←  𝑡 

Abduction - Main Idea 

𝑔  

𝑝, 𝑞  

𝑞  

𝑡  

𝑝, 𝑞 , 𝑞 , 𝑡 , 𝑔  Potential solutions: 



Tensor Embedding 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 

⊥ ⊤ 𝑔 𝑝 𝑞 𝑡 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 

𝑔 → 𝑝 ∧  𝑞 



𝐴∷1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 

𝑔 → 𝑝 ∧  𝑞 

𝐴∷2 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 

𝑔 → 𝑞 

𝐴∷3 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 1

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 

𝑔 → 𝑡 

𝐴∷4 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 

Keep 𝑔  



Frontal Slices 

𝐴∷𝑘 Third-Order 
Tensor 𝐴 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

 



Abductive Step 

𝐻1 𝐴 ×2

0
1
1
0
0
0

 =

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 

𝑔     ⇒     𝑝, 𝑞 , 𝑞 , 𝑡 , 𝑔  



Inconsistencies 

𝑔 ← 𝑝 ∧  𝑞 
𝑔 ← 𝑞 
𝑔 ←  𝑡 
    ← 𝑡  

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 So far: 

Idea: Compute 𝐿𝐻𝑀(𝑃 ∪ Δ) for each column 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 



Inconsistencies 

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 ⇒ 

0 0 1 0
1 1 1 1
1 1 1 1
1 0 1 0
1 1 1 0
0 0 1 0

 
𝐿𝐻𝑀 



Inconsistencies 

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 ⇒ 

0 0 1 0
1 1 1 1
1 1 1 1
1 0 1 0
1 1 1 0
0 0 1 0

 
𝐿𝐻𝑀 

Inconsistent! 



Inconsistencies 

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 

⊥
⊤
𝑔
𝑝
𝑞
𝑡

 ⇒ 

0 0 1 0
1 1 1 1
1 1 1 1
1 0 1 0
1 1 1 0
0 0 1 0

 
𝐿𝐻𝑀 

Inconsistent! 

Remove inconsistencies, duplicates, and continue to 
Abductive Step… 



Abducibles 
• Δ ⊆ 𝐴𝑏 if and only if: 

 
𝑣 Δ × 𝑣 𝐴𝑏 = 𝑣 Δ 

 

• Post-Filtering 

• If Abducibles are not defined, then Δ ⊆ 𝐴𝑏 implies        
𝐻1 𝐴𝑃 ×2 𝑣 Δ = 𝑣 Δ after duplicates are removed 

(Filter during run) 



Discussion and Future Work 

• Clauses with negation 

• First-Order Predicate Logic 

• Optimisation and Scalability Testing 

Future Work: 

• Proof of correctness has been completed 

• An unoptimised implementation has been made 



Tensor Multiplication 

× = × = 

= 
Flatten 



Multiple Definitions 

𝑔 ← 𝑝 ∧  𝑞 
𝑔 ← 𝑝 ∧  𝑟 
 

𝐻

1 0 0 0 0 0
1 1 1 1 1 1

1 0 0
1

2

1

2

1

2
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

⋅

0
1
0
0
1
1

=

0
1
1
0
0
0

 

Introduce auxiliary variables: 

𝑔1 ← 𝑝 ∧  𝑞 
𝑔2 ← 𝑝 ∧  𝑟 
 

𝑔 ← 𝑔1 
𝑔 ← 𝑔2 
 

⊥ 

⊤ 
𝑔 

𝑝 
𝑞 
𝑟 


