GPU-Accelerated Hypothesis Cover Set Testing for Learning in Logic

> Eyad Algahtani and Dimitar Kazakov University of York

28th ILP Conference, Ferrara, 4 Sep 2018

GPU-Accelerated Hypothesis Cover Set Testing for Learning in Logic

> Eyad Algahtani and Dimitar Kazakov University of York

28th ILP Conference, Ferrara, 4 Sep 2018

Overview

 Classic ILP algorithms combine cover set evaluation with a search algorithm using that result to find the best hypothesis.

Overview

 Classic ILP algorithms combine cover set evaluation with a search algorithm using that result to find the best hypothesis.

Overview (2)

- General-purpose GPU computation allows data-parallelism to be used in finding the cover set of logic hypotheses.
- Our long-term aim is: the efficient implementation of classic ILP-inspired algorithms for the Description Logic (DL) domain.

Description Logics

- Make use of unary predicates (*concepts*) and binary predicates, so called *roles*, e.g.: car1 *in_front_of* car2, car1 *size* short
- Several classes of DL exist depending on their expressivity, e.g. whether they have:
 - Existential restriction: <u>*drives*.Ferrari</u>
 - ◆ Value restriction: ∀*drives*.Ferrari
 - ◆ Number restrictions: ≥2 drives.Ferrari (cf. '2 Jags' Prescott)
 - ✦ Transitive roles, inverse roles, etc.

Description Logics (2)

- Expressivity of a given DL may affect decidability
- DL vs Horn clauses: neither subsumes the other. A good overlap, e.g. these definitions* are equivalent (for explicit types & non-transitive def. of infront/2):

eastbound(X):has_car(X,Y), shape(Y, rectangle), infront(Y,Z), load(Z, triangle).

Eastbound =Train ⊓ ∃has_car.(∃shape.Rectangle ⊓ ∃infront.(∃load.Triangle))

Eastbound =Train ⊓ ∃has_car.(∀shape.Rectangle ⊓ ∀infront.(∀load.Triangle))

*Horn clause example from: Meike Schaller. *How does the Representation of Machine Learned Relational Rules affect Human Comprehensibility? A comparative study.* 2017

Relational Learning for Description Logics

- DL-FOIL (Fanizzi, d'Amato, Esposito 2008)
- DL-Learner (Buehmann, Lehmann, Westphal 2016)
- APARELL: Learning ordinal relations (Qomariyah & Kazakov 2017)

Speeding up ILP Learners

- Avoid redundancy:
 - Query packs (Blockeel et al 2000)
- Parallelise computation (Fonseca et al 2005):
 - animal(X,fish) || animal(X,mammal) || animal(X,bird)
 - divide the search space among different threads
 - split the data, learn, merge results

Speeding up Hypothesis Evaluation

- Given a GPU
 - The CPU can run the search algorithm while
 - the GPU evaluates individual hypotheses.
- We're using Nvidia GeForce GTX 1070 GPU running CUDA library

CPU - GPU Interplay

GPU Hypothesis Evaluation for Propositional Data

	C1	C2	C3	C4		Result (C2 AND C3)	
	1	0	0	1	=	0	Individual 1
Thread 1	1	0	1	0	=	0	Individual 2
	1	1	1	1	=	1	Individual 3
Г	1	0	1	0	=	0	Individual 4
Thread 2	0	1	0	1	=	0	Individual 5
	0	1	1	0	=	1	Individual 6
	0	1	0	1	=	0	Individual 7
Thread 3	0	1	1	0	=	1	Individual 8
	0	1	0	1	=	0	Individual 9
					=		Individual N
					•		•.
						cover set size = $\sum Res$	sult _i

GPU Hypothesis Evaluation for Propositional Data

- Membership of unary predicates/concepts is represented through a 2D binary matrix in the 'global' GPU memory (shared by all threads). There are two such matrices for the ⊕, resp. ⊖ examples of the target concept.
- Data parallelism is used to compute conjunction, disjunction or negation of concepts: the matrix is split up, and a thread assigned to each part.
- A 1D array is used to record the membership of each individual in the hypothesis being tested, e.g. C1 U C2 U C3.Lazy evaluation can be used. Total coverage is added up by the GPU using reduction-sum.
- Coverage of \oplus and \ominus ex.s of the target concept is counted separately.

GPU Hypothesis Evaluation for Propositional Data

 Each result (e.g. C1 U C2 U C3) can be directly memoized by simply adding it as another column to the individuals x concepts matrix. The memory for it needs to be preallocated though to make the process efficient.

 I.e. if we have N concepts, we need to allocate a combined matrix of size individuals x (N+M).

Sample Operator Pseudocode

Algorithm 1 For a Boolean matrix M (individuals \times concepts)

 $\mathbf{procedure} \ \mathbf{ParallelConceptConjunctionCoverSet}$

```
set S := list of concepts in conjunction
parallel_foreach thread T_i
    foreach individual I_j in thread T_i
    l set result(row(I_j)) := 1
    l foreach concept C_k in set S
    l | set result(row(I_j)) := result(row(I_j)) && M(row(I_j),column(C_k))
    l | if (result(row(I_j)) == 0) break
    l endfor
    endfor
endfor
```

return Boolean array: result(1..numberOfIndividuals)

Best & Worst Times

Instances	4 concepts				
(pos+neg)					
	Ti	me	Time		
	all (all	1s)	(all 0s)		
	conj	disj	conj	disj	
2 imes 100	$10.69 \ \mu s$	$9.09 \ \mu s$	$10.69 \ \mu s$	$11.20 \ \mu s$	
2 imes 1,000	$12.83 \ \mu s$	$16.38 \ \mu s$	11.14 μs	$11.81 \ \mu s$	
2 imes 10,000	$20.35 \ \mu s$	$29.95 \ \mu s$	17.34 μs	$20.35 \ \mu s$	
2 imes100,000	44.16 μs	$31.97 \ \mu s$	$31.55 \ \mu s$	$45.02 \ \mu s$	
2 imes 1,000,000	$315.65 \ \mu s$	$224.74 \ \mu s$	$223.30 \ \mu s$	$314.08~\mu s$	
2 imes10,000,000	$2.76 \mathrm{ms}$	$2.05 \mathrm{ms}$	2.06 ms	$2.75 \mathrm{~ms}$	
2 imes100,000,000	$27.55 \mathrm{\ ms}$	$20.63 \mathrm{ms}$	19.10 ms	$25.45 \mathrm{\ ms}$	

CPU (1 thread) v GPU (1, 32 threads/block) 4 attributes/concepts/unary predicates

GPU vs single-thread CPU

- For 2,000,000 individuals and 4 concepts, and the worst case w.r.t. lazy evaluation:
 - ◆ 1 thread/block GPU is ~150 times <u>slower</u>
 - ♦ 64-thread/block GPU is ~38 times faster

t=f(#concepts)

t=f(#concepts)

- Due to lazy evaluation, increasing the number of concepts does not necessarily increase execution time.
- The worst case time complexity increases approx. linearly as hoped for.

Representing Roles on the GPU

Individual A	Role	Individual B
6	1	46
6	1	5
9	2	14
1079	3	78
749	3	43
465	4	89
89	4	700
658	4	133
98	5	1079

Existential Restriction Pseudocode

Algorithm 4 Compute Existential Restriction (\exists)

procedure ParallelExistentialRestrictiOnConcepts(role,role_start_ind,role_end_ind,S)

return Boolean array: result(1..numberOfIndividuals)

Value Restriction Pseudocode

Algorithm 5 Compute Value Restriction (\forall)

procedure ParallelUniversalRestrictiOnConcepts(role,role_start_ind,role_end_ind,S)

```
Call setAllElementsInResultToVal_inParallel(1)
set S := list of concepts in conjunction
set IndA := list of individualA (individualA values) in the same Role
set IndB := list of individualB (individualB values) in the same Role
parallel_foreach thread T_i
    foreach individualA I_A in set IndA
    i foreach concept C_k in set S
    i i set result(row(I_A)) := result(row(I_A)) && M(row(I_B),column(C_k))
    i i f (result(row(I_A)) == 0) break
    i endfor
    endfor
```

return Boolean array: result(1..numberOfIndividuals)

The enD