
GPU-Accelerated 
Hypothesis Cover Set 

Testing for Learning in Logic
Eyad Algahtani and Dimitar Kazakov  

University of York 

28th ILP Conference, Ferrara, 4 Sep 2018

1



GPU-Accelerated 
Hypothesis Cover Set 

Testing for Learning in Logic
Eyad Algahtani and Dimitar Kazakov  

University of York 

28th ILP Conference, Ferrara, 4 Sep 2018

2



Overview

• Classic ILP algorithms combine cover set 
evaluation with a search algorithm using that 
result to find the best hypothesis. 



Overview

• Classic ILP algorithms combine cover set 
evaluation with a search algorithm using that 
result to find the best hypothesis. 
 
 
 



Overview (2)

• General-purpose GPU computation allows  
data-parallelism to be used in finding the  
cover set of logic hypotheses. 

• Our long-term aim is: the efficient implementation of 
classic ILP-inspired algorithms for the Description 
Logic (DL) domain.



• Make use of unary predicates (concepts) and binary 
predicates, so called roles, e.g.: car1 in_front_of car2,  
car1 size short  

• Several classes of DL exist depending on their expressivity,  
e.g. whether they have: 

✦ Existential restriction: ∃drives.Ferrari 

✦ Value restriction: ∀drives.Ferrari  

✦ Number restrictions: ≥2 drives.Ferrari (cf. ‘2 Jags’ Prescott) 

✦ Transitive roles, inverse roles, etc.

Description Logics



• Expressivity of a given DL may affect decidability 

• DL vs Horn clauses: neither subsumes the other. A good overlap, e.g. these 
definitions* are equivalent (for explicit types & non-transitive def. of infront/2): 

eastbound(X):-   
    has_car(X,Y), shape(Y, rectangle), infront(Y,Z), load(Z, triangle). 

Eastbound ≡Train ⊓ ∃has_car.(∃shape.Rectangle ⊓ ∃infront.(∃load.Triangle)) 

Eastbound ≡Train ⊓ ∃has_car.(∀shape.Rectangle ⊓ ∀infront.(∀load.Triangle)) 

*Horn clause example from: 
Meike Schaller. How does the Representation of Machine Learned Relational 
Rules affect Human Comprehensibility? A comparative study. 2017

Description Logics (2)



• DL-FOIL (Fanizzi, d’Amato, Esposito 2008) 

• DL-Learner (Buehmann, Lehmann, Westphal 2016) 

• APARELL: Learning ordinal relations (Qomariyah & 
Kazakov 2017)

Relational Learning 
for Description Logics



Speeding up  
ILP Learners

• Avoid redundancy: 

✦ Query packs (Blockeel et al 2000) 

• Parallelise computation (Fonseca et al 2005): 

✦ animal(X,fish) || animal(X,mammal) || animal(X,bird) 

✦ divide the search space among different threads 

✦ split the data, learn, merge results



Speeding up  
Hypothesis  Evaluation

• Given a GPU 

✦ The CPU can run the search algorithm while 

✦ the GPU evaluates individual hypotheses. 

• We’re using Nvidia GeForce GTX 1070 GPU 
running CUDA library



CPU      GPU Interplay



GPU Hypothesis Evaluation 
for Propositional Data



GPU Hypothesis  Evaluation 
for Propositional Data

• Membership of unary predicates/concepts is represented through a 
2D binary matrix in the ‘global’ GPU memory (shared by all threads). 
There are two such matrices for the ⊕, resp. ⊖ examples of the target 
concept. 

• Data parallelism is used to compute conjunction, disjunction or 
negation of concepts: the matrix is split up, and a thread assigned to 
each part.  

• A 1D array is used to record the membership of each individual in the 
hypothesis being tested, e.g. C1 U C2 U C3.Lazy evaluation can be 
used. Total coverage is added up by the GPU using reduction-sum. 

• Coverage of ⊕ and ⊖ ex.s of the target concept is counted separately.



GPU Hypothesis  Evaluation 
for Propositional Data

• Each result (e.g. C1 U C2 U C3) can be directly 
memoized by simply adding it as another column to 
the individuals x concepts matrix. The memory for it 
needs to be preallocated though to make the process 
efficient. 

✦ I.e. if we have N concepts, we need to allocate a 
combined matrix of size individuals x (N+M).



Sample Operator Pseudocode



Best & Worst Times



CPU (1 thread) v GPU (1, 32 threads/block) 
4 attributes/concepts/unary predicates



GPU vs  single-thread CPU

• For 2,000,000 individuals and 4 concepts, and 
the worst case w.r.t. lazy evaluation: 

✦ 1 thread/block GPU is ~150 times slower 

✦ 64-thread/block GPU is ~38 times faster



t=f(#concepts)



t=f(#concepts)

• Due to lazy evaluation, increasing the number of  
 concepts does not necessarily increase execution time. 

• The worst case time complexity increases approx.     
 linearly as hoped for.



Representing Roles  
on the GPU



Existential Restriction 
Pseudocode



Value Restriction 
Pseudocode



The enD


