Using Binary Decision Diagrams to Enumerate Inductive Logic Programming Solutions

Hikaru Shindo*, Masaaki Nishino**, Akihiro Yamamoto*

September 4, 2018

* Graduate School of Informatics, Kyoto University
** NTT Communication Science Laboratories
Abstract

• We propose an efficient algorithm for enumerating solutions of Inductive Logic Programming problem with Binary Decision Diagrams.
 • Basic formalization of ILP allows many potential solutions, and we might miss important solutions. ➞ Enumeration is fundamental technique to avoid such missing.
 • Key idea: We use Binary Decision Diagram for enumeration.
 • Binary Decision Diagram (BDD) is a directed acyclic graph representing compactly a Boolean function.

• We show how to build recursively a Binary Decision Diagram that represents the set of solutions.
Table of contents

1. Introduction

2. Binary Decision Diagram and Enumeration of Solutions

3. Applications

4. Experiments

5. Conclusion and Future work
Introduction
Motivation

• ILP system generate solutions for given positive examples and negative examples. On the view point of logic, a lot of candidates of solutions might be generated.

• Every ILP system choose some appropriate solutions based on some criteria or its search method.

Example

\[\mathcal{E}^+ = \{p(a)\}, \quad \Rightarrow \quad \Sigma = \{p(a)\}, \]
\[\mathcal{E}^- = \{p(b)\}, \quad \Sigma = \{p(x) \leftarrow q(x), q(a)\}, \]
\[\mathcal{B} = \{\} \]

We call the solution of ILP problem as hypothesis.
Fundamental idea: Enumeration of hypotheses

Enumeration of hypotheses is keeping all hypotheses.

Merits of the enumeration:

1. **Preventing hypothesis omission**
 The importance of a hypothesis depends on the case, so algorithms that give only one hypothesis may not return the best hypothesis.

2. **Hypothesis selection**
 Users can select a hypothesis or compare some hypotheses using an evaluation function.

3. **Online-learning**
 We can efficiently perform online learning, i.e., updating the current set of hypothesis when new examples are added.
• We assume that a finite set of clauses that can be an element of hypotheses is given explicitly.
 • Even in that finite space, enumerating all hypotheses naively is an implausible task because there are a serious amount of candidate hypotheses.

• To treat such large scale sets of hypotheses, we use Binary Decision Diagrams (BDDs) that give compressed representation of hypotheses for enumeration.

• In this work, we developed an efficient recursive algorithm for constructing a BDD.
Contribution

- An efficient algorithm for enumerating hypotheses using BDDs.
- The class of ILP problems that we can apply our algorithm.
- An efficient algorithm to get the best hypothesis with an evaluation function.
- We empirically show that our method can be applied to real data.
Binary Decision Diagram and Enumeration of Solutions
A Binary Decision Diagram (BDD) is a directed acyclic graph that represents a Boolean function.

BDD that represents $F(x_0, x_1, x_2) = (x_0 \land x_1) \lor x_2$

Binary operations between BDDs can be executed efficiently. For example, given two BDDs representing logical functions F and G, then the BDD representing $H = F \land G$ can be computed in time linear to F and G sizes.
Inductive Logic Programming

In Inductive Logic Programming (ILP), all data, background knowledge, and hypotheses are represented by first-order logic.

ILP Problem

<table>
<thead>
<tr>
<th>Input</th>
<th>Finite sets \mathcal{E}^+, \mathcal{E}^-, and \mathcal{B} of ground atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>A set of definite clauses Σ such that</td>
</tr>
<tr>
<td></td>
<td>1. for all $A \in \mathcal{E}^+$ $\Sigma \cup \mathcal{B} \models A$</td>
</tr>
<tr>
<td></td>
<td>2. for all $A \in \mathcal{E}^-$ $\Sigma \cup \mathcal{B} \not\models A$</td>
</tr>
</tbody>
</table>

Example

$\mathcal{E}^+ = \{p(a)\}, \mathcal{E}^- = \{p(b)\}, \mathcal{B} = \{\}$

$\Sigma = \{p(a)\}, \{p(x) \leftarrow q(x), q(a)\}, \ldots$
Using BDDs for enumerating ILP solutions

- To enumerate ILP hypotheses with BDDs, we introduce Boolean variables, because BDD is a representation of a Boolean function.

- Boolean variables make the hypothesis enumeration problem equivalent to the problem of identifying a Boolean function.

- Hypothesis space \mathcal{H} is a finite set of clauses that can be an element of the hypothesis. We assume that \mathcal{H} is given explicitly.

For each clause $C \in \mathcal{H}$, we introduce a propositional variable $v_{C \in \Sigma}$ that becomes true if and only if clause $C \in \Sigma$.

For readability, we represent $[C \in \Sigma]$ instead of $v_{C \in \Sigma}$.

$$C \in \Sigma \iff [C \in \Sigma] = T.$$

(1)
Building a BDD that represents hypotheses

We define F_A as a BDD that represents the Boolean function that becomes true if and only if $\Sigma \cup \mathcal{B} \models A$.

Then, a BDD that represents the set of hypotheses is

$$\bigwedge_{A \in \mathcal{E}^+} F_A \land \bigwedge_{A \in \mathcal{E}^-} \neg F_A.$$

Example

Given:

$$\mathcal{E}^+ = \{p(a)\}, \mathcal{E}^- = \{p(b)\}, \mathcal{B} = \{\}.$$

The BDD to be built:

$$F_{p(a)} \land \neg F_{p(b)} =$$
I_C: the BDD that represents the Boolean variable $[C \in \Sigma]$

BK_A: the BDD that represents a constant that becomes true if and only if $A \in \mathcal{B}$.

Then F_A for $A \in \mathcal{E}^+ \cup \mathcal{E}^-$ is recursively defined as

$$F_A = BK_A \lor \bigvee_{\begin{array}{c} C \in \mathcal{H} \\ \exists \theta \\ C \theta = A \leftarrow B_1 \land \ldots \land B_n \end{array}} \left(I_C \land \land F_{B_i} \right). \quad (2)$$

The right side of equation (2) represents the fact that $\Sigma \cup \mathcal{B} \models A$ if

1. $A \in \mathcal{B}$, or
2. A is deduced by a substitution.
Solving ILP problem on the BDD

Example

Introduced variables:

① \([p(a) \in \Sigma]\), ② \([p(b) \in \Sigma]\), ③ \([q(a) \in \Sigma]\), ④ \([q(b) \in \Sigma]\), ⑤ \([p(x) \leftarrow q(x) \in \Sigma]\)

\[
F_{p(a)} = I_{p(a)} \lor (I_{p(x)} \leftarrow q(x) \land F_{q(a)})
\]

\[
F_{p(b)} = I_{p(b)} \lor (I_{p(x)} \leftarrow q(x) \land F_{q(b)})
\]
Solving ILP problem on the BDD

Problem

\[\mathcal{E}^+ = \{ p(a) \}, \mathcal{E}^- = \{ p(b) \}, \mathcal{B} = \{ \} , \]
\[\mathcal{H} = \left\{ p(a), p(b), q(a), q(b), p(x) \leftarrow q(x) \right\} . \]

Introduced variables:

\[\begin{align*}
\textcircled{0} [p(a) \in \Sigma] & \quad \textcircled{1} [p(b) \in \Sigma] \\
\textcircled{2} [q(a) \in \Sigma] & \quad \textcircled{3} [q(b) \in \Sigma] \\
\textcircled{4} [p(x) \leftarrow q(x) \in \Sigma] & \\
\end{align*} \]

Enumerated hypotheses:

\[\Sigma = \{ p(a) \} \]
\[\Sigma = \{ q(a), p(x) \leftarrow q(x) \} \]
\[\vdots \]
Applications
Search for the best hypothesis

Introduced variables:

0. \([p(a) \in \Sigma]\)
1. \([p(b) \in \Sigma]\)
2. \([q(a) \in \Sigma]\)
3. \([q(b) \in \Sigma]\)
4. \([p(x) \leftarrow q(x) \in \Sigma]\)

Example

The hypothesis with minimum number of atoms:

\[\Sigma_{best} = \{p(a)\}\]

This corresponds to the minimum-weight path colored red.
Experiments
Classification of natural numbers

When \(n \) is even,

\[
\mathcal{E}^+ = \{e(0), e(s^2(0)), \ldots, e(s^n(0))\}, \\
\mathcal{E}^- = \{e(s(0)), e(s^3(0)), \ldots, e(s^{n+1}(0))\}.
\]

When \(n \) is odd,

\[
\mathcal{E}^+ = \{e(0), e(s^2(0)), \ldots, e(s^{n+1}(0))\}, \\
\mathcal{E}^- = \{e(s(0)), e(s^3(0)), \ldots, e(s^n(0))\}.
\]

Example

In the case of \(n = 1 \), \(\mathcal{E}^+, \mathcal{E}^-, \mathcal{B}, \) and \(\mathcal{H} \) are, respectively,

\[
\mathcal{E}^+ = \{e(0), e(s^2(0))\}, \quad \mathcal{E}^- = \{e(s(0))\}, \quad \mathcal{B} = \emptyset, \quad \text{and}
\]

\[
\mathcal{H} = \begin{cases}
 e(0), & e(x), \\
 e(s(0)), & e(s(x)), \\
 e(s^2(0)), & e(s^2(x)), \\
 e(s(x)) \leftarrow e(x), & e(s^2(x)) \leftarrow e(x), \\
 e(s^2(x)) \leftarrow e(s(x)), & e(s^2(x)) \leftarrow e(s(x)) \land e(x)
\end{cases}.
\]
Results

<table>
<thead>
<tr>
<th>n</th>
<th>variables</th>
<th>nodes</th>
<th>hypotheses</th>
<th>BDD construction time</th>
<th>best hypothesis search time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>8</td>
<td>28</td>
<td>7.56msec</td>
<td>0.62msec</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>14</td>
<td>192</td>
<td>9.63msec</td>
<td>0.68msec</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>27</td>
<td>1.25×10^7</td>
<td>1.90 \times 10msec</td>
<td>1.02msec</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>42</td>
<td>1.31×10^{13}</td>
<td>3.08 \times 10msec</td>
<td>1.16msec</td>
</tr>
<tr>
<td>5</td>
<td>134</td>
<td>69</td>
<td>4.82×10^{32}</td>
<td>7.00 \times 10msec</td>
<td>1.48msec</td>
</tr>
<tr>
<td>6</td>
<td>263</td>
<td>101</td>
<td>9.77×10^{63}</td>
<td>3.50×10^2msec</td>
<td>2.21msec</td>
</tr>
<tr>
<td>7</td>
<td>520</td>
<td>156</td>
<td>2.26×10^{141}</td>
<td>1.68×10^3msec</td>
<td>1.68msec</td>
</tr>
<tr>
<td>8</td>
<td>1033</td>
<td>219</td>
<td>$1.80 \times 10^{308}+$</td>
<td>1.20×10^4msec</td>
<td>2.66msec</td>
</tr>
</tbody>
</table>

Table 1: The results of the natural number problem
Classification of real data

(1) Soybean(small)\(^1\) and (2) Shuttle Landing Control\(^2\) from UCI Machine Learning Repository\(^3\).

Target concept: \(D1, no_auto\) respectively.

<table>
<thead>
<tr>
<th>Problem</th>
<th>variables</th>
<th>nodes</th>
<th>hypotheses</th>
<th>BDD construction time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean</td>
<td>2243</td>
<td>788498</td>
<td>(1.80 \times 10^{308}+)</td>
<td>13495msec</td>
</tr>
<tr>
<td>Shuttle</td>
<td>117</td>
<td>2345</td>
<td>(6.76 \times 10^{10})</td>
<td>30msec</td>
</tr>
</tbody>
</table>

Table 2: The results of real data problem

One of the best hypotheses found in problem of Soybean(small) is,

\[
\Sigma_{best} = \{\text{class}(x, D1) \leftarrow \text{stem_canker}(x, above_soil)\}.
\]

\(^1\)https://archive.ics.uci.edu/ml/datasets/soybean+(small)
\(^2\)https://archive.ics.uci.edu/ml/datasets/Shuttle+Landing+Control
\(^3\)http://archive.ics.uci.edu/ml/index.php
Conclusion and Future work
Conclusion

• We proposed a BDD-based method to enumerate hypotheses of an ILP.
• We showed that users can get the best hypothesis following an evaluation function from the constructed BDD.

Future Work

• Enumerating hypotheses that have some errors
• Combination with other ILP approaches
• Enumeration with other data structures
Hypothesis space is a finite set of clauses that can be an element of the hypothesis.

We assume that the hypothesis space is given explicitly, and it satisfies the following two requirements.

Requirement 1
The hypothesis space does not contain any mutually recursive clauses.

Requirement 2
The hypothesis space is variable-bounded.
Mutually recursive clauses

Let \mathcal{H} be a hypothesis space that is a finite set of definite clauses. If a series of definite clauses $\{C_i \in \mathcal{H}\}_{i=0,...,n}$ and substitutions $\theta_1, \ldots, \theta_n$ exist, and they are expressed as

\[
C_1 \theta_1 = A \leftarrow \ldots \land X_1 \land \ldots,
\]
\[
C_2 \theta_2 = X_1 \leftarrow \ldots \land X_2 \land \ldots,
\]
\[\vdots\]
\[
C_n \theta_n = X_{n-1} \leftarrow \ldots \land A \land \ldots,
\]

then C_1, C_2, \ldots, C_n are mutually recursive clauses.

Having no mutually recursive clauses ensures that we can trace all literals present in the hypothesis space in a finite number of steps.
Definite clause $A \leftarrow B_1 \land \ldots \land B_n$ is variable-bounded if $v(A) \supseteq v(B_i)$ ($i = 1, \ldots, n$), where $v(C)$ is the set of all variables in C. The hypothesis space \mathcal{H} is variable-bounded if all $C \in \mathcal{H}$ are variable-bounded.

Being variable-bounded ensures that for a clause $C\theta = A \leftarrow B_1 \land \ldots \land B_n \in \mathcal{H}$, if A has no variables, then B_i ($i = 1, \ldots, n$) also has no variables.