

Concept Learning in Engineering based on Refinement Operator

28th International Conference on Inductive Logic Programming

<u>Yingbing Hua, Björn Hein</u>

Institute for Anthropomatics and Robotics – Intelligent Process Control and Robotics (IAR-IPR)

Motivation

- Semantic Interoperability between engineering systems
- Machine interpretation of user defined concepts
- "What does one <u>target concept</u> mean using the language of the source system?"

AutomationML (IEC 62714)

3

Semantic Lifting

AML models	OWL Models	Example
role class	class	Robot
Interface class	class	DigitalIOInterface
system unit	individual	KR5
external interface	individual	digital_io_1
relationship	object property hasIE, hasEI	
attribute	data property	hasWeight

Add semantic annotation in the OWL models to indicate their roles in CAEX (Runde et. al, 2009)

Semantic Lifting – Example

attributes -	<pre>stemUnitClass Name="KR5">¬ <attribute attributedatatype="xs:string" changemo="" name="model"> Oescription>product model of this hardware¬ </attribute>¬ Oescription>manufacturer of this hardware¬ </pre>
substructures	<pre><internalelement <<="" id="5f5f2c62-5ac5-4ca8-8bc8-d <RoleRequirements RefBaseRoleClassPath=" name="RobotArm" reapproleclasslib="" th=""></internalelement></pre>

. . .

Semantic Lifting – Example

<pre>stemUnitClass Name="KR5">¬ <attribute attributedatatype="xs:string" changemo="" name="model"> <description>product model of this hardware</description>¬ > <value>KR5</value>¬</attribute></pre>	
¬	
<pre><attribute attributedatatype="xs:string" c<="" name="manufacturer" th="" ·=""><th>hasManufacturer(kr5, "KUKA") hasExternalInterface(kr5, kr5_digitalIn1)</th></attribute></pre>	hasManufacturer(kr5, "KUKA") hasExternalInterface(kr5, kr5_digitalIn1)
<pre> cInternalElement · Name="RobotArm" · ID="5f5f2c62-5ac5-4ca8-8bc8-d</pre>	<pre>hasInternalElement(kr5, kr5_arm) DigitalIOInterface(kr5_digitalIn1) Robot(kr5_arm)</pre>

>> >> <Value>0</Value>¬

6

Given the **semantic representation** of AML data, how can we **learn** a **concept description** of the data?

Concept Learning in AML – Setting

Target

Source

AML

Input:

- Background knowledge \mathcal{K} : lifted AML
- Target Concept name C
- Examples (user chosen) E: pos. and neg.
- Closed-world assumption
- Output:

Class description of C in OWL 2 DL: $\mathcal{K} \cup C \models \mathcal{E}^+, \mathcal{K} \cup C \not\models \mathcal{E}^-$

$$\begin{array}{l} \mathsf{RobotTypeX} \equiv \exists \mathsf{hasWeight.} [\leq 78.5] \\ \Box \exists \mathsf{hasInternalElement} \ \mathsf{Robot} \end{array}$$

DL-Learner (Bühmann et. al, 2016)

- Framework for concept learning in description logics
- Top-down refinement operators
 - ALC (complete)
 - EL (ideal)
 - *ALC* with features from OWL 2 DL: concrete roles, cardinality restrictions ...
- Learning algorithms for OWL 2 DL:
 - DL-Learner OWL Class Expression Learner (OCEL)
 - Class Expression Learner for Ontology Engineering (CELOE)

Partial Closed-World Reasoning

- Instance retrieval of named classes before learning: a single model
- Closed-world reasoning using the single model
- much faster and more suitable in machine learning setting

Concept Learning in AML – Pipeline

Extending the Refinement Operator

Extending the Refinement Operator

- Use knowledge in the XML schema to restrict the search space
 - ① Only external interfaces can reference interface classes
 - 2 Each external interface can only reference one interface class
 - ③ A system unit can reference multiple role classes
 - ④ A system unit can have (recursive) internal structures
 - 5 An external interface has no internal structure
- Integrate these constraints into the refinement operator
- Implemented on top of DL-Learner
- Can dramatically reduce the number of concept hypotheses

Extending the Refinement Operator

$$\rho(C) = \begin{cases} \{\bot\} \cup \rho_{\top}(C) & \text{if } C = \top\\ \rho_{\top}(C) & \text{otherwise} \end{cases}$$

$$\rho_B(C) = \begin{cases} \emptyset & \text{if } C = \bot \\ \{C_1 \sqcup \cdots \sqcup C_n \mid C_i \in M_B \ (1 \le i \le n)\} & \text{if } C = \top \\ \{A' \mid A' \in sh_{\downarrow}(A)\} & \text{if } C = A \ (A \in N_C) \\ \cup \{A \sqcap D \mid D \in \rho_B(\top)\} & \\ \{\neg A' \mid A' \in sh_{\uparrow}(A)\} & \text{if } C = \neg A \ (A \in N_C) \\ \cup \{\neg A \sqcap D \mid D \in \rho_B(\top)\} & \\ \{\exists r.E \mid A = ar(r), E \in \rho_A(D)\} & \text{if } C = \exists r.D \\ \cup \{\exists r.D \sqcap E \mid E \in \rho_B(\top)\} & \\ \cup \{\exists s.D \mid s \in sh_{\downarrow}(r)\} & \\ \{\forall r.E \mid A = ar(r), E \in \rho_B(\top)\} & \\ \cup \{\forall r.D \sqcap E \mid E \in \rho_B(\top)\} & \\ \cup \{\forall r.D \sqcap E \mid E \in \rho_B(\top)\} & \\ \cup \{\forall r.\bot \mid \\ D = A \in N_C \ \text{and } sh_{\downarrow}(A) = \emptyset\} & \\ \cup \{\forall s.D \mid s \in sh_{\downarrow}(r)\} & \\ \{C_1 \sqcap \cdots \sqcap C_{i-1} \sqcap D \sqcap C_{i+1} \sqcap \cdots \sqcap C_n \mid \text{ if } C = C_1 \sqcap \cdots \sqcap C_n \\ D \in \rho_B(C_i), 1 \le i \le n\} & (n \ge 2) \\ \{C_1 \sqcup \cdots \sqcup C_{i-1} \sqcup D \sqcup C_{i+1} \sqcup \cdots \sqcup C_n \mid \text{ if } C = C_1 \sqcup \cdots \sqcup C_n \\ D \in \rho_B(C_i), 1 \le i \le n\} & (n \ge 2) \\ \cup \{(C_1 \sqcup \cdots \sqcup C_n) \sqcap D \mid \\ D \in \rho_B(\top)\} & \\ \end{cases}$$

Experiment Results – Performance

9,243

8,792

Benchmark 1 & 2

0,8

0,451

aml (b2)

105,779

Summary

✓ Pipeline of concept learning in AML using DL-Learner

✓ Extension of the default *ALC* refinement operator

Application in data exchange

 \blacktriangleright Investigate other semantic languages and refinement operators

Better searching algorithms

Self-adaptive heuristics (parameter learning)

Bottom-up approaches

References

- N. Schmid and A. Lüder, "AutomationML in a Nutshell", November 2015.
- M. Uschold, "Where are the semantics in the semantic web?" AI Mag., vol. 24, no. 3, Sept. 2003
- AutomationML e.V., "Whitepaper AutomationML Part 1 Architecture and general requirements", July 2013.
- S. Runde, K. Güttel and A. Fay, "Transformation von CAEX-Anlagenplanungsdaten in OWL: Eine Anwendung von Technologien des Semantic Web," in Automation 2009, June 2009
- L. Bühmann, J. Lehmann, and P. Westphal, "DL-Learner: A Framework for Inductive Learning on the Semantic Web," Web Semantics, vol. 39, Aug. 2016.

Thank you for the attention!

Any Questions?

AutomationML (AML)

- The Automation Mark-up Language
- International standard as IEC 62714
- Data modeling and exchange in the field of production systems engineering and commissioning
- XML-based

AutomationML (AML)

We need a formal semantic representation of AML data for concept learning

Concept Learning in AML – Example

Experiments

- Source AML document:
 - 220 classes
 - 497 individuals
 - 73 data properties
- Two benchmarks
 - +50 role classes, +25 interface classes
 - +100 role classes, +50 interface classes

Measure time until first 100% accurate solution: synthetic ground truths

- default refinement operator from DL-Learner
- extended AML refinement operator