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Turbine Diagnostics
Diagnostics of equipment is needed to 

§ maximise its up-time 
§ minimise maintenance costs 

Diagnostic method
§ turbines generate data

§ a turbine has about 2,000 sensors 
§ sensors report temp, pressure. Etc
§ data ~“continuous” signals

§ diagnostic programs 
§ detect patterns in data
§ fire alarm messages

§ analytical models
§ process data and messages

2

Semantic Condition Monitoring: The Case of Siemens 3

Fig. 1. CMS Architecture [18].

The following section presents details of the current state-of-the-art; section 3
describes the requirements and challenges of the existing technologies; section 4 details
the proposed solution and high-level architecture; section 5 demonstrates the use-case
and experimental results; and section 6 draws conclusions.

2 Condition Monitoring with Rules

2.1 Typical Monitoring Routine

Traditionally, condition monitoring systems relied on manual detection and isolation
of the faults based on schematic and meter readings [2]. As equipment became more
complex, built-in test equipment, simple alarms, and trending analysis were implemented
to warn the operators in a timely manner and enable early detection of faults to continue
operational life of a system or subsystem component. Most of the recent implementations
of CM and diagnostic systems follows the architecture as depicted in Figure 2.

First, the failure mode specifications are carried out by domain experts that incor-
porates sensor and signal processing techniques. The specification language contains
both the data sources on which the rules operates and the analytic rules that govern
their behaviour. The analytic rules may support a richer set of computation and statistics
functions e.g. standard deviations, pearson correlation etc., an advantage that makes them
better suited to more computationally intensive tasks. The names of the data sources
correspond to the sensor tags and their threshold values needed by the rule to work. And
the sensor tag names are specific to each machine, limiting the analytic rules to exactly
one machine. In order to deploy an analytic rule created for one machine onto the next
one it was necessary to exchange all the sensor tags and configured thresholds mentioned
in the specification of the first rule by the corresponding sensor tags and thresholds of the
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Our Proposal: to Fight Data Dependency
To rely on ontologies (OBDA)
§ ontologies 

§ offer generic diagnostic vocabulary 
§ capture background knowledge 

§ mappings 
§ connect the vocabulary to 

data signals 
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Example 2. The start and end of a purging process data-driven rules as in Equations (1)
and (2) from the running example can be expressed in sigRL as follows:

PurgingStart = avg rotorStart : value(>, purgingSpeed), (6)
PurgingStop = avg rotorStart : value(<, nonPurgingSpeed). (7)

Here, rotorStart is the CQ defined in Equation (5). For brevity we do not introduce
a new concept for each expression but we just join them with symbol “:”. Constants
purgingSpeed and nonPurgingSpeed are parameters of an analysed turbine, and they are
instantiated from the turbine configuration when the expressions are evaluated. ut

Diagnostic Programs and Messages. We now show how to use signal expressions to
compose diagnostic programs and to alert messages. In the following we will consider
well formed sets of signal expressions, that is, sets where each concept is defined at most
once and where definitions of new concepts are assumed to be acyclic: if C1 is used to
define C2 (directly or indirectly) then C1 cannot be defined (directly or indirectly) using
C1.

A diagnostic program (or simply program) ⇧ is a tuple (S,K,M) where S is a set
of basic signals, K is a KB, M is a set of well formed signal processing expressions such
that each concept that is defined in M does not appear in K.

Example 3. The running example program ⇧ = (S,K,M) has the following compo-
nents: sensors S = {‘S21R1T1’, ‘S22R1T1’, ‘S23R1T1’}, KB K that consists of axioms
from Equations (3)–(4), and M that consists of expressions from Equations (6)–(7). ut

A message rule is a rule of the form, where C is a concept and m is a (text) message:

message(m) = C.

Example 4. Using expressions (6) and (7) we define the following message:

message(“Purging over”) = FlameSensor : duration(>, 10s) :

after[15s] PurgingStart : after[20s] PurgingStop (8)

The message intuitively indicates that the purging is over. ut

Now we are ready to define the semantics of the rules, expression and programs.

Semantics of sigRL. We now define how to determine whether a program ⇧ fires a rule
r. To this end, we extend first-order interpretations that are used to define semantics of
OWL 2 KBs. In OWL 2 a first class citizen is an object o and interpretation is defining
whether C(o) is true or not for particular concept C. In our scenario, domain of objects
is a domain of sensor ids (basic or ones defined by expressions). Thus each object o is
also having assigned function fo that represents the signal value of that object. Obviously,
an identifier o can also be an id of a turbine component that does not have signal function.
At the moment, (since it is not crucial for this study and it simplifies the formalism) we
also assign undefined signal f? to such (non-signal) objects.

Formally, our interpretation I is a pair (IFOL, IS) where IFOL interprets objects and
their relationships (like in OWL 2) and IS interprets signals. First, we define how I
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Message Rules

Complex Signal Expressions 

C = Concept C contains
Q all signal ids return by Q evaluated over the KB.
↵ � C1 one signal s0 for each signal s in C1 with fs0 = ↵ � fs.
C1 : value(�,↵) one signal s0 for each signal s in C1 with fs0(t) = ↵� fs(t)

if fs(t)� ↵ at time point t; otherwise fs0(t) = ?.
C1 : duration(�, t0) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I s.t.:

fs is defined I , t 2 I and size(I)� t0; otherwise fs0(t) = ?.
{s1, . . . , sm} all enumerated signal {s1, . . . , sm}.
C = agg C1 one signal s0 with fs0(t) = aggs2C1

fs(t), that is, s0 is obtained from
all signals in C1 by applying the aggregate agg at each time point t.

C1 : align C2 a signal s1 from C1 if: exists a signal s2 from C2 that is aligned with s1, i.e., for each
interval I1 where fs1 is defined there is an interval I2 where fs2 is defined s.t. I1 aligns with I2.

C1 : trend(direction) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I around t s.t.:
fs is defined I , and fs is an increasing (decreasing) function on I for direction=up (=down resp.)

Figure 2. Meaning of signal processing expressions. For the interval I , size(I) is its size. For intervals I1, I2 the alignment is: “I1 within I2” if I1 ✓ I2;
“I1 after[t] I2” if all points of I2 are after I1 and the start of I2 is within the end of I1 plus period t; “I1 before[t] I2” if “I2 start[t] I1”.

following ontological expression that says that DoorSensor
is a kind of PressureSensor:

SubClassOf(DoorSensor PressureSensor). (2)

Data sets of KBs consist of data assertions enumerating
concrete sensors, trains, and their components. The fol-
lowing assertions says that sensors SKNF X01,SKNF X02,
SKNF X03 and SKNF X04 are all door sensors:

ClassAssertion(DoorSensor SKNF X01),

ClassAssertion(DoorSensor SKNF X02),

ClassAssertion(DoorSensor SKNF X03),

ClassAssertion(DoorSensor SKNF X04). (3)

In order to enjoy favourable semantic and computational
characteristics of OBDA, we consider well-studied ontol-
ogy language OWL 2 QL that allows to express subclass
(resp. sub-property) axioms between classes and projections
of properties (resp. corollary between properties). We refer
the reader to [7] for details on OWL 2 QL.

To query KBs we rely on conjunctive queries (CQs) and
certain answer semantics that have been extensively studied
for OWL 2 QL KBs and proved to be tractable [7]. For
example, the following CQ returns all main car sensors:

MainCarDoors(x) doorSensor(x) ^ locatedIn(x, y)^
(PlatformAccessArea(y) _ CabinAccessArea(y)) (4)

To be precise, the above contains disjunction in the body
thus it can be represented as a union of two CQs.

3) Signals Processing Expressions: We introduce signal
expressions that filter and manipulate basic signals and cre-
ate new more complex signals. Intuitively, in our language
we group signals in ontological concepts and signal expres-
sion are defined on the level of concepts. Then, a signal
processing expression is recursively defined as follows:

C = Q | {s1, . . . , sm} |

↵ � C | C1 : value(�,↵) |

agg C1 | C1 : duration(�, t) |

C1 : align C2 | C1 : trend(direction).

where C is a concept, Q is a CQ with one output variable,
� 2 {+,�,⇥, /}, agg 2 {min,max, avg, sum}, ↵ 2 R,

� 2 {<,>,,�}, align 2 {within, after[t], before[t]}, t
is a period, and direction 2 {up, down}.

The formal meaning of signal processing expressions is
defined in Figure 2. In order to make the mathematics right,
we assume that c � ? = ? � c = ? and c � ? = ? � c =
false for c 2 R, and analogously we assume for aggregate
functions. If the value of a signal function at a time point
is not defined with these rules, then we define it as ?.
Example 2. The data-driven rules to determine car door
functioning as in Equations (1) from the running example
can be expressed with two concepts in SDRL as follows:

DoorsLocked = sum MainCarDoors : value(=, LockedValue), (5)
PressureUp = CabinPressure : trend(’up’) : duration(>, 33sec) (6)

Here, MainCarDoors is the CQ defined in Equation (4).
For brevity we do not introduce a new concept for each
expression but we just join them with symbol “:”. Constant
LockedValue is parameters of an analysed door of a train,
and they are instantiated from the train configuration when
the expressions are evaluated.

4) Diagnostic Programs and Messages: We now show
how to use signal expressions to compose diagnostic pro-
grams and to alert messages. In the following we will
consider well formed sets of signal expressions, that is, sets
where each concepts is defined at most once and where
definitions of new concepts are assumed to be acyclic: if C1

is used to define C2 (directly or indirectly) then C1 cannot
defined (directly or indirectly) using C1.

A diagnostic program (or simply program) ⇧ is a tuple
(S,K,M) where S a set of basic signals, K a KB, M a
set of well formed signal processing expressions such that
each concept that is defined in M does not appear in K.

Example 3. The running example program ⇧ =
(S,K,M) has the following components: sensors S =
{SKNF X01, SKNF X02, SKNF X03, SKNF X04}, KB K

that consists of axioms from Equations (2) and (3), and M

that consists of expressions from Equations (5) and (6).

On top of diagnostic programs ⇧ SDRL allows to define
message rules that report the current status of a system.
Formally, they are defined as Boolean combinations of signal
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{SKNF X01, SKNF X02, SKNF X03, SKNF X04}, KB K

that consists of axioms from Equations (2) and (3), and M

that consists of expressions from Equations (5) and (6).

On top of diagnostic programs ⇧ SDRL allows to define
message rules that report the current status of a system.
Formally, they are defined as Boolean combinations of signal

C = Concept C contains
Q all signal ids return by Q evaluated over the KB.
↵ � C1 one signal s0 for each signal s in C1 with fs0 = ↵ � fs.
C1 : value(�,↵) one signal s0 for each signal s in C1 with fs0(t) = ↵� fs(t)

if fs(t)� ↵ at time point t; otherwise fs0(t) = ?.
C1 : duration(�, t0) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I s.t.:

fs is defined I , t 2 I and size(I)� t0; otherwise fs0(t) = ?.
{s1, . . . , sm} all enumerated signal {s1, . . . , sm}.
C = agg C1 one signal s0 with fs0(t) = aggs2C1

fs(t), that is, s0 is obtained from
all signals in C1 by applying the aggregate agg at each time point t.

C1 : align C2 a signal s1 from C1 if: exists a signal s2 from C2 that is aligned with s1, i.e., for each
interval I1 where fs1 is defined there is an interval I2 where fs2 is defined s.t. I1 aligns with I2.

C1 : trend(direction) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I around t s.t.:
fs is defined I , and fs is an increasing (decreasing) function on I for direction=up (=down resp.)

Figure 2. Meaning of signal processing expressions. For the interval I , size(I) is its size. For intervals I1, I2 the alignment is: “I1 within I2” if I1 ✓ I2;
“I1 after[t] I2” if all points of I2 are after I1 and the start of I2 is within the end of I1 plus period t; “I1 before[t] I2” if “I2 start[t] I1”.

following ontological expression that says that DoorSensor
is a kind of PressureSensor:

SubClassOf(DoorSensor PressureSensor). (2)

Data sets of KBs consist of data assertions enumerating
concrete sensors, trains, and their components. The fol-
lowing assertions says that sensors SKNF X01,SKNF X02,
SKNF X03 and SKNF X04 are all door sensors:

ClassAssertion(DoorSensor SKNF X01),

ClassAssertion(DoorSensor SKNF X02),

ClassAssertion(DoorSensor SKNF X03),

ClassAssertion(DoorSensor SKNF X04). (3)

In order to enjoy favourable semantic and computational
characteristics of OBDA, we consider well-studied ontol-
ogy language OWL 2 QL that allows to express subclass
(resp. sub-property) axioms between classes and projections
of properties (resp. corollary between properties). We refer
the reader to [7] for details on OWL 2 QL.

To query KBs we rely on conjunctive queries (CQs) and
certain answer semantics that have been extensively studied
for OWL 2 QL KBs and proved to be tractable [7]. For
example, the following CQ returns all main car sensors:

MainCarDoors(x) doorSensor(x) ^ locatedIn(x, y)^
(PlatformAccessArea(y) _ CabinAccessArea(y)) (4)

To be precise, the above contains disjunction in the body
thus it can be represented as a union of two CQs.

3) Signals Processing Expressions: We introduce signal
expressions that filter and manipulate basic signals and cre-
ate new more complex signals. Intuitively, in our language
we group signals in ontological concepts and signal expres-
sion are defined on the level of concepts. Then, a signal
processing expression is recursively defined as follows:

C = Q | {s1, . . . , sm} |

↵ � C | C1 : value(�,↵) |

agg C1 | C1 : duration(�, t) |

C1 : align C2 | C1 : trend(direction).

where C is a concept, Q is a CQ with one output variable,
� 2 {+,�,⇥, /}, agg 2 {min,max, avg, sum}, ↵ 2 R,

� 2 {<,>,,�}, align 2 {within, after[t], before[t]}, t
is a period, and direction 2 {up, down}.

The formal meaning of signal processing expressions is
defined in Figure 2. In order to make the mathematics right,
we assume that c � ? = ? � c = ? and c � ? = ? � c =
false for c 2 R, and analogously we assume for aggregate
functions. If the value of a signal function at a time point
is not defined with these rules, then we define it as ?.
Example 2. The data-driven rules to determine car door
functioning as in Equations (1) from the running example
can be expressed with two concepts in SDRL as follows:

DoorsLocked = sum MainCarDoors : value(=, LockedValue), (5)
PressureUp = CabinPressure : trend(’up’) : duration(>, 33sec) (6)

Here, MainCarDoors is the CQ defined in Equation (4).
For brevity we do not introduce a new concept for each
expression but we just join them with symbol “:”. Constant
LockedValue is parameters of an analysed door of a train,
and they are instantiated from the train configuration when
the expressions are evaluated.

4) Diagnostic Programs and Messages: We now show
how to use signal expressions to compose diagnostic pro-
grams and to alert messages. In the following we will
consider well formed sets of signal expressions, that is, sets
where each concepts is defined at most once and where
definitions of new concepts are assumed to be acyclic: if C1

is used to define C2 (directly or indirectly) then C1 cannot
defined (directly or indirectly) using C1.

A diagnostic program (or simply program) ⇧ is a tuple
(S,K,M) where S a set of basic signals, K a KB, M a
set of well formed signal processing expressions such that
each concept that is defined in M does not appear in K.

Example 3. The running example program ⇧ =
(S,K,M) has the following components: sensors S =
{SKNF X01, SKNF X02, SKNF X03, SKNF X04}, KB K

that consists of axioms from Equations (2) and (3), and M

that consists of expressions from Equations (5) and (6).

On top of diagnostic programs ⇧ SDRL allows to define
message rules that report the current status of a system.
Formally, they are defined as Boolean combinations of signal

C = Concept C contains
Q all signal ids return by Q evaluated over the KB.
↵ � C1 one signal s0 for each signal s in C1 with fs0 = ↵ � fs.
C1 : value(�,↵) one signal s0 for each signal s in C1 with fs0(t) = ↵� fs(t)

if fs(t)� ↵ at time point t; otherwise fs0(t) = ?.
C1 : duration(�, t0) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I s.t.:

fs is defined I , t 2 I and size(I)� t0; otherwise fs0(t) = ?.
{s1, . . . , sm} all enumerated signal {s1, . . . , sm}.
C = agg C1 one signal s0 with fs0(t) = aggs2C1

fs(t), that is, s0 is obtained from
all signals in C1 by applying the aggregate agg at each time point t.

C1 : align C2 a signal s1 from C1 if: exists a signal s2 from C2 that is aligned with s1, i.e., for each
interval I1 where fs1 is defined there is an interval I2 where fs2 is defined s.t. I1 aligns with I2.

C1 : trend(direction) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I around t s.t.:
fs is defined I , and fs is an increasing (decreasing) function on I for direction=up (=down resp.)

Figure 2. Meaning of signal processing expressions. For the interval I , size(I) is its size. For intervals I1, I2 the alignment is: “I1 within I2” if I1 ✓ I2;
“I1 after[t] I2” if all points of I2 are after I1 and the start of I2 is within the end of I1 plus period t; “I1 before[t] I2” if “I2 start[t] I1”.

following ontological expression that says that DoorSensor
is a kind of PressureSensor:

SubClassOf(DoorSensor PressureSensor). (2)

Data sets of KBs consist of data assertions enumerating
concrete sensors, trains, and their components. The fol-
lowing assertions says that sensors SKNF X01,SKNF X02,
SKNF X03 and SKNF X04 are all door sensors:

ClassAssertion(DoorSensor SKNF X01),

ClassAssertion(DoorSensor SKNF X02),

ClassAssertion(DoorSensor SKNF X03),

ClassAssertion(DoorSensor SKNF X04). (3)

In order to enjoy favourable semantic and computational
characteristics of OBDA, we consider well-studied ontol-
ogy language OWL 2 QL that allows to express subclass
(resp. sub-property) axioms between classes and projections
of properties (resp. corollary between properties). We refer
the reader to [7] for details on OWL 2 QL.

To query KBs we rely on conjunctive queries (CQs) and
certain answer semantics that have been extensively studied
for OWL 2 QL KBs and proved to be tractable [7]. For
example, the following CQ returns all main car sensors:

MainCarDoors(x) doorSensor(x) ^ locatedIn(x, y)^
(PlatformAccessArea(y) _ CabinAccessArea(y)) (4)

To be precise, the above contains disjunction in the body
thus it can be represented as a union of two CQs.

3) Signals Processing Expressions: We introduce signal
expressions that filter and manipulate basic signals and cre-
ate new more complex signals. Intuitively, in our language
we group signals in ontological concepts and signal expres-
sion are defined on the level of concepts. Then, a signal
processing expression is recursively defined as follows:

C = Q | {s1, . . . , sm} |

↵ � C | C1 : value(�,↵) |

agg C1 | C1 : duration(�, t) |

C1 : align C2 | C1 : trend(direction).

where C is a concept, Q is a CQ with one output variable,
� 2 {+,�,⇥, /}, agg 2 {min,max, avg, sum}, ↵ 2 R,

� 2 {<,>,,�}, align 2 {within, after[t], before[t]}, t
is a period, and direction 2 {up, down}.

The formal meaning of signal processing expressions is
defined in Figure 2. In order to make the mathematics right,
we assume that c � ? = ? � c = ? and c � ? = ? � c =
false for c 2 R, and analogously we assume for aggregate
functions. If the value of a signal function at a time point
is not defined with these rules, then we define it as ?.
Example 2. The data-driven rules to determine car door
functioning as in Equations (1) from the running example
can be expressed with two concepts in SDRL as follows:

DoorsLocked = sum MainCarDoors : value(=, LockedValue), (5)
PressureUp = CabinPressure : trend(’up’) : duration(>, 33sec) (6)

Here, MainCarDoors is the CQ defined in Equation (4).
For brevity we do not introduce a new concept for each
expression but we just join them with symbol “:”. Constant
LockedValue is parameters of an analysed door of a train,
and they are instantiated from the train configuration when
the expressions are evaluated.

4) Diagnostic Programs and Messages: We now show
how to use signal expressions to compose diagnostic pro-
grams and to alert messages. In the following we will
consider well formed sets of signal expressions, that is, sets
where each concepts is defined at most once and where
definitions of new concepts are assumed to be acyclic: if C1

is used to define C2 (directly or indirectly) then C1 cannot
defined (directly or indirectly) using C1.

A diagnostic program (or simply program) ⇧ is a tuple
(S,K,M) where S a set of basic signals, K a KB, M a
set of well formed signal processing expressions such that
each concept that is defined in M does not appear in K.

Example 3. The running example program ⇧ =
(S,K,M) has the following components: sensors S =
{SKNF X01, SKNF X02, SKNF X03, SKNF X04}, KB K

that consists of axioms from Equations (2) and (3), and M

that consists of expressions from Equations (5) and (6).

On top of diagnostic programs ⇧ SDRL allows to define
message rules that report the current status of a system.
Formally, they are defined as Boolean combinations of signal

C = Concept C contains
Q all signal ids return by Q evaluated over the KB.
↵ � C1 one signal s0 for each signal s in C1 with fs0 = ↵ � fs.
C1 : value(�,↵) one signal s0 for each signal s in C1 with fs0(t) = ↵� fs(t)

if fs(t)� ↵ at time point t; otherwise fs0(t) = ?.
C1 : duration(�, t0) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I s.t.:

fs is defined I , t 2 I and size(I)� t0; otherwise fs0(t) = ?.
{s1, . . . , sm} all enumerated signal {s1, . . . , sm}.
C = agg C1 one signal s0 with fs0(t) = aggs2C1

fs(t), that is, s0 is obtained from
all signals in C1 by applying the aggregate agg at each time point t.

C1 : align C2 a signal s1 from C1 if: exists a signal s2 from C2 that is aligned with s1, i.e., for each
interval I1 where fs1 is defined there is an interval I2 where fs2 is defined s.t. I1 aligns with I2.

C1 : trend(direction) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I around t s.t.:
fs is defined I , and fs is an increasing (decreasing) function on I for direction=up (=down resp.)

Figure 2. Meaning of signal processing expressions. For the interval I , size(I) is its size. For intervals I1, I2 the alignment is: “I1 within I2” if I1 ✓ I2;
“I1 after[t] I2” if all points of I2 are after I1 and the start of I2 is within the end of I1 plus period t; “I1 before[t] I2” if “I2 start[t] I1”.

following ontological expression that says that DoorSensor
is a kind of PressureSensor:

SubClassOf(DoorSensor PressureSensor). (2)

Data sets of KBs consist of data assertions enumerating
concrete sensors, trains, and their components. The fol-
lowing assertions says that sensors SKNF X01,SKNF X02,
SKNF X03 and SKNF X04 are all door sensors:

ClassAssertion(DoorSensor SKNF X01),

ClassAssertion(DoorSensor SKNF X02),

ClassAssertion(DoorSensor SKNF X03),

ClassAssertion(DoorSensor SKNF X04). (3)

In order to enjoy favourable semantic and computational
characteristics of OBDA, we consider well-studied ontol-
ogy language OWL 2 QL that allows to express subclass
(resp. sub-property) axioms between classes and projections
of properties (resp. corollary between properties). We refer
the reader to [7] for details on OWL 2 QL.

To query KBs we rely on conjunctive queries (CQs) and
certain answer semantics that have been extensively studied
for OWL 2 QL KBs and proved to be tractable [7]. For
example, the following CQ returns all main car sensors:

MainCarDoors(x) doorSensor(x) ^ locatedIn(x, y)^
(PlatformAccessArea(y) _ CabinAccessArea(y)) (4)

To be precise, the above contains disjunction in the body
thus it can be represented as a union of two CQs.

3) Signals Processing Expressions: We introduce signal
expressions that filter and manipulate basic signals and cre-
ate new more complex signals. Intuitively, in our language
we group signals in ontological concepts and signal expres-
sion are defined on the level of concepts. Then, a signal
processing expression is recursively defined as follows:

C = Q | {s1, . . . , sm} |

↵ � C | C1 : value(�,↵) |

agg C1 | C1 : duration(�, t) |

C1 : align C2 | C1 : trend(direction).

where C is a concept, Q is a CQ with one output variable,
� 2 {+,�,⇥, /}, agg 2 {min,max, avg, sum}, ↵ 2 R,

� 2 {<,>,,�}, align 2 {within, after[t], before[t]}, t
is a period, and direction 2 {up, down}.

The formal meaning of signal processing expressions is
defined in Figure 2. In order to make the mathematics right,
we assume that c � ? = ? � c = ? and c � ? = ? � c =
false for c 2 R, and analogously we assume for aggregate
functions. If the value of a signal function at a time point
is not defined with these rules, then we define it as ?.
Example 2. The data-driven rules to determine car door
functioning as in Equations (1) from the running example
can be expressed with two concepts in SDRL as follows:

DoorsLocked = sum MainCarDoors : value(=, LockedValue), (5)
PressureUp = CabinPressure : trend(’up’) : duration(>, 33sec) (6)

Here, MainCarDoors is the CQ defined in Equation (4).
For brevity we do not introduce a new concept for each
expression but we just join them with symbol “:”. Constant
LockedValue is parameters of an analysed door of a train,
and they are instantiated from the train configuration when
the expressions are evaluated.

4) Diagnostic Programs and Messages: We now show
how to use signal expressions to compose diagnostic pro-
grams and to alert messages. In the following we will
consider well formed sets of signal expressions, that is, sets
where each concepts is defined at most once and where
definitions of new concepts are assumed to be acyclic: if C1

is used to define C2 (directly or indirectly) then C1 cannot
defined (directly or indirectly) using C1.

A diagnostic program (or simply program) ⇧ is a tuple
(S,K,M) where S a set of basic signals, K a KB, M a
set of well formed signal processing expressions such that
each concept that is defined in M does not appear in K.

Example 3. The running example program ⇧ =
(S,K,M) has the following components: sensors S =
{SKNF X01, SKNF X02, SKNF X03, SKNF X04}, KB K

that consists of axioms from Equations (2) and (3), and M

that consists of expressions from Equations (5) and (6).

On top of diagnostic programs ⇧ SDRL allows to define
message rules that report the current status of a system.
Formally, they are defined as Boolean combinations of signal

C = Concept C contains
Q all signal ids return by Q evaluated over the KB.
↵ � C1 one signal s0 for each signal s in C1 with fs0 = ↵ � fs.
C1 : value(�,↵) one signal s0 for each signal s in C1 with fs0(t) = ↵� fs(t)

if fs(t)� ↵ at time point t; otherwise fs0(t) = ?.
C1 : duration(�, t0) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I s.t.:

fs is defined I , t 2 I and size(I)� t0; otherwise fs0(t) = ?.
{s1, . . . , sm} all enumerated signal {s1, . . . , sm}.
C = agg C1 one signal s0 with fs0(t) = aggs2C1

fs(t), that is, s0 is obtained from
all signals in C1 by applying the aggregate agg at each time point t.

C1 : align C2 a signal s1 from C1 if: exists a signal s2 from C2 that is aligned with s1, i.e., for each
interval I1 where fs1 is defined there is an interval I2 where fs2 is defined s.t. I1 aligns with I2.

C1 : trend(direction) one signal s0 for each signal s in C1 with fs0(t) = fs(t) if exists an interval I around t s.t.:
fs is defined I , and fs is an increasing (decreasing) function on I for direction=up (=down resp.)

Figure 2. Meaning of signal processing expressions. For the interval I , size(I) is its size. For intervals I1, I2 the alignment is: “I1 within I2” if I1 ✓ I2;
“I1 after[t] I2” if all points of I2 are after I1 and the start of I2 is within the end of I1 plus period t; “I1 before[t] I2” if “I2 start[t] I1”.

following ontological expression that says that DoorSensor
is a kind of PressureSensor:

SubClassOf(DoorSensor PressureSensor). (2)

Data sets of KBs consist of data assertions enumerating
concrete sensors, trains, and their components. The fol-
lowing assertions says that sensors SKNF X01,SKNF X02,
SKNF X03 and SKNF X04 are all door sensors:

ClassAssertion(DoorSensor SKNF X01),

ClassAssertion(DoorSensor SKNF X02),

ClassAssertion(DoorSensor SKNF X03),

ClassAssertion(DoorSensor SKNF X04). (3)

In order to enjoy favourable semantic and computational
characteristics of OBDA, we consider well-studied ontol-
ogy language OWL 2 QL that allows to express subclass
(resp. sub-property) axioms between classes and projections
of properties (resp. corollary between properties). We refer
the reader to [7] for details on OWL 2 QL.

To query KBs we rely on conjunctive queries (CQs) and
certain answer semantics that have been extensively studied
for OWL 2 QL KBs and proved to be tractable [7]. For
example, the following CQ returns all main car sensors:

MainCarDoors(x) doorSensor(x) ^ locatedIn(x, y)^
(PlatformAccessArea(y) _ CabinAccessArea(y)) (4)

To be precise, the above contains disjunction in the body
thus it can be represented as a union of two CQs.

3) Signals Processing Expressions: We introduce signal
expressions that filter and manipulate basic signals and cre-
ate new more complex signals. Intuitively, in our language
we group signals in ontological concepts and signal expres-
sion are defined on the level of concepts. Then, a signal
processing expression is recursively defined as follows:

C = Q | {s1, . . . , sm} |

↵ � C | C1 : value(�,↵) |

agg C1 | C1 : duration(�, t) |

C1 : align C2 | C1 : trend(direction).

where C is a concept, Q is a CQ with one output variable,
� 2 {+,�,⇥, /}, agg 2 {min,max, avg, sum}, ↵ 2 R,

� 2 {<,>,,�}, align 2 {within, after[t], before[t]}, t
is a period, and direction 2 {up, down}.

The formal meaning of signal processing expressions is
defined in Figure 2. In order to make the mathematics right,
we assume that c � ? = ? � c = ? and c � ? = ? � c =
false for c 2 R, and analogously we assume for aggregate
functions. If the value of a signal function at a time point
is not defined with these rules, then we define it as ?.
Example 2. The data-driven rules to determine car door
functioning as in Equations (1) from the running example
can be expressed with two concepts in SDRL as follows:

DoorsLocked = sum MainCarDoors : value(=, LockedValue), (5)
PressureUp = CabinPressure : trend(’up’) : duration(>, 33sec) (6)

Here, MainCarDoors is the CQ defined in Equation (4).
For brevity we do not introduce a new concept for each
expression but we just join them with symbol “:”. Constant
LockedValue is parameters of an analysed door of a train,
and they are instantiated from the train configuration when
the expressions are evaluated.

4) Diagnostic Programs and Messages: We now show
how to use signal expressions to compose diagnostic pro-
grams and to alert messages. In the following we will
consider well formed sets of signal expressions, that is, sets
where each concepts is defined at most once and where
definitions of new concepts are assumed to be acyclic: if C1

is used to define C2 (directly or indirectly) then C1 cannot
defined (directly or indirectly) using C1.

A diagnostic program (or simply program) ⇧ is a tuple
(S,K,M) where S a set of basic signals, K a KB, M a
set of well formed signal processing expressions such that
each concept that is defined in M does not appear in K.

Example 3. The running example program ⇧ =
(S,K,M) has the following components: sensors S =
{SKNF X01, SKNF X02, SKNF X03, SKNF X04}, KB K

that consists of axioms from Equations (2) and (3), and M

that consists of expressions from Equations (5) and (6).

On top of diagnostic programs ⇧ SDRL allows to define
message rules that report the current status of a system.
Formally, they are defined as Boolean combinations of signal
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Signal processing expressions C Encoding of C

Q ⌧C(x) Q(x), value(x, v).

{s1, . . . , sm} ⌧C(si) value(si, v), for each si

↵ � C1, where � 2 {+,�,⇥, /} ⌧C(fC(x)), value(fC(x), v) ⌧C1(x), value(x, v), v = ↵ � v0.

C1 : value(�,↵), where � 2 {<,>,,�} ⌧C(fC(x)), value(fC(x), v) ⌧C1(x), value(x, v), v � ↵.

C1 : duration(�, t) ⌧C(fC(x)) [0,t] �[0,t] ⌧C1(x).

value(fC(x), v) ⌧C(fC(x)), value(x, v).

C1 : duration(<, t) ⌧C(fC(x)) ⌧C1(x), ¬ ( [0,t](�[0,t]⌧C1(x)).

value(fC(x), v) ⌧C(fC(x)), value(x, v).

agg C1, where agg 2 {min,max, avg, sum} ⌧C(c), value(c, v) v = aggJv1 | value(x, v1), ⌧C1(x)K,
where c is a fresh constant, aggJ·K is an aggregation operator over bags

C1 : after[t] C2 ⌧C(fC(x1)) 
�
⌧C1(x1)

�
U[0,1)

�
(¬⌧C1(x1) ^ ¬⌧C2(x2)) U[0,t] ⌧C2(x2)

�
.

value(fC(x1), v) ⌧C(fC(x1)), value(x1, v)

C1 : before[t] C2 ⌧C(fC(x1)) 
�
⌧C1(x1)

�
S[0,1)

�
(¬⌧C1(x1) ^ ¬⌧C2(x2)) S[0,t] ⌧C2(x2)

�
.

value(fC(x1), v) ⌧C(fC(x1)), value(x1, v)

C1 : within C2 ⌧C(fC(x1)) 
⇣�

⌧C1(x1) ^ ⌧C2(x2)
�
S[0,1) (¬⌧C1(x1))

⌘
U[0,1)

�
¬⌧C1(x1)

�
.

value(fC(x1), v) ⌧C(fC(x1)), value(x1, v).

C1 : trend(up) ⌧C(fC(x)) ⌧C1(x),¬ notTrendUpC1
(x)

notTrendUpC1
(x) ⌧C1(x), value(x, v1), (0,�](value(x, v2), v1 > v2)

where � is a “small enough” positive real number

value(fC(x), v) ⌧C(fC(x)), value(x, v).

C1 : trend(down) ⌧C(fC(x)) ⌧C1(x),¬ notTrendDownC1(x)

notTrendDownC1(x) value(x, v1), (0,�](value(x, v2), v1 < v2)

where � is a “small enough” positive real number

value(fC(x), v) ⌧C(fC(x)), value(x, v).

Boolean combinations D Encoding of D

D = C pD  [0,1)⌧C(x).

pD  [0,1)⌧C(x).

D = D1 and D2 pD  pD1 , pD2 .

D = not D1 pD  ¬pD1 .

message(m) = D message(m) pD.

Table 1: The encoding SDRL language into extended datalogMTL. For each signal processing expression in the left column, the corresponding
datalogMTLrules are provided in the right column.

This is expressible in Datalog by two rules connected with
a negation. First we compute intervals on which a signal
is not trending up with the rule:

notTrendUpCP(x) CabinPressure(x), value(x, v1),

(0,�](value(x, v2), v1 > v2)

Intuitively, formula (value(x, v1), (0,�](value(x, v2), v1 >
v2)) evaluates to true for some value v1 at a time point t
if there exists an interval of a size at most � containing t

in which signal x has another value v2 that is smaller than
v1. Here, a parameter � is a “small” real number and it is
typically selected based on the size of signal sampling.
Then we compute the trending-up intervals by eliminat-

ing non-trending-up time points:

CabinPressureAux(fcp(x)) CabinPressure(x),

¬notTrendUpCP(x)

Here, functional symbol fcp is used to create a new signal
identifier for each x. The values of the new signals are the

9



Usability Study
§ Users: 6 Siemens engineers
§ Tasks: 10 tasks, 3 levels of difficulty: low (3), medium (3), hard (4)
§ Setting: write 10 tasks over 1, 5, 10, and 50 turbines
§ Results: over 50 turbines 1.900 sec saved, 4 times faster 
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Diagnostics Task D1: “Is there a ramp change after 6 min in the turbine T100?”:

SlowRotor = minRotorSensor : value(<, slowSpeed) : duration(>, 30s).

FastRotor = maxRotorSensor : value(>, fastSpeed) : duration(>, 30s).

RampChange = FastRotor : after[6m] SlowRotor.

message(“Ramp change”) = RampChange.

Diagnostic Task D3: “Does the turbine T100 reach purging and ignition speed for 30 sec?”:

Ignition = avg RotorSensor : value(<, ignitionSpeed).

PurgeAndIgnition = PurgingStart : duration(>, 30s) :

after[2m] Ignition : duration(>, 30s).

message(“Purging and Ignition”) = PurgeAndIgnition.

Diagnostics Task D4: “Does the turbine T100 go from ignition to stand still within 1min and then
stand still for 30 sec?”:

StandStill = avg RotorSensor : value(<, standStillSpeed).

IgnitionToStand = Ignition : duration(>, 1m) :

after[1.5m] StandStill : duration(>, 30s).

message(“Ignition to Stand”) = IgnitionToStand.

Diagnostics Task D5: “Is the turbine T100 ready to start?”:

message(“Ready to Start”) = RampChange : after[5m] PurgingOver :

after[11m] PurgingAndIgnition :

after[15s] IgnitionToStand.

Fig. 6. Signal processing rules that we used for performance evaluation.

case the time goes from 400 to 2.100 seconds, while in the semantic case it goes from 90
to 240. Thus, for 10 tasks the semantic approach allows to save about 1.900 seconds and
it is more than 4 times faster than the baseline approach.

Performance Evaluation. In this experiment, we evaluate how well our SQL translation
approach scales. For this we prepared 5 diagnostic task, corresponding data, and verified
firing of messages using a standard relational database engine PostgreSQL. We conducted
experiments on an HP Proliant server with 2 Intel Xeon X5690 Processors (each with 12
logical cores at 3.47GHz), 106GB of RAM. We now first describe the diagnostic tasks
and the data, and then report the evaluation results.

In Figure 6 we present four of our 5 diagnostic tasks, and the task D2 is our running
example. Note that D1–D4 are independant from each other, while D5 combines complex
signals defined in the other four tasks. This is a good example of modularity of sigRL. On
the data side, we took measurements from 2 sensors over 6 days as well as the relevant
information about the turbines where the sensors were installed. Then, we scaled the
original data to 2000 sensors; our scaling respect the structure of the original data. The
largest raw data for 2000 sensors took 5.1GB on disk in a PostgreSQL database engine.

During the experiments our system did two steps: translation of semantic diagnostic
programs into SQL code and then execution of this SQL. During the first step our system



Usability Study
§ Users: 6 Siemens engineers
§ Tasks: 10 tasks, 3 levels of difficulty: low (3), medium (3), hard (4)
§ Setting: write 10 tasks over 1, 5, 10, and 50 turbines
§ Results: over 50 turbines 1.900 sec saved, 8 times faster 
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Fig. 5. Results of the user study. Left four figures: the average time in seconds that the users took
to express the tasks T1-T10 for 1, 5, 10, and 50 turbines using existing Siemens rule language
(Baseline or B) and our semantic rule language sigRL (Semantic or S). Right figure: the total time
in seconds the user took to express the tasks grouped according to their complexity.

Table 3 using both existing Siemens rule language (as the baseline) and sigRL; while
we were recording the authoring time. Note that all participants managed to write the
diagnostic tasks correctly and the study was conducted on a standard laptop.

Figure 5 summarises the results of the user study. The four left figures present the
average time that the six participants took to formulate the 10 tasks over respectively 1, 5,
10, and 50 turbines. We now first discuss how the authoring time changes within each of
the four figures, that is, when moving from simple to complex tasks, and then across the
four figures, that is, when moving from 1 to 50 turbines.

Observe that in each figure one can see that in the baseline case the authoring time is
higher than in the semantic case, i.e., when sigRL is used. Moreover, in the semantic case
the time only slightly increases when moving from simple (T1-T3) to complex (T7-T10)
tasks, while in the baseline case it increases significantly: from 2 to 4 times. The reason
is that in the baseline case the number of sensor tags makes a significant impact on the
authoring time: each of this tags has to be found in the database and included in the
rule, while in the semantic case the number of tags does not make any impact since
all relevant tags can be specified using queries. The number of event messages and the
structure of rules affects both the baseline and the semantic case, and this is the reason
why the authoring time grows in the semantic case when going from rules with low to
high complexity.

Now consider how the authoring time changes for a given tasks when moving from 1
to 50 turbines. In the baseline case, moving to a higher number of turbines requires to
duplicate and modify the rules by first slightly modifying the rule structure (to adapt the
rules to turbine variations) and then replacing concrete sensors tags, threshold values, etc.
In the semantic case, moving to a higher number of turbines requires only to modify the
rule structure. As the result, one can see that in the semantic case all four semantic plots
are very similar: the one for 50 turbines is only about twice higher than for 1 turbine.
Indeed, to adapt the semantic diagnostic task T4 from 1 to 50 turbines the participants in
average spent 50 seconds, while formulating the original task for 1 turbine took them
about 30 seconds.

Finally, let us consider how the total time for all 10 tasks changes when moving from
1 to 50 turbines. This information is in Figure 5 (right). One can see that in the baseline



Conclusion
A novel Semantic Diagnostic 
Rule-based  Language (SDRL)
§ Higher-level data independent language
§ to write SPRs over ontologies 

Main technical contribution: FO rewritable
§ We proved that query answering is FO rewritable
§ “Ontology-based data access (OBDA)” - compatible
§ I.e. answering queries in SDRL can be checked using SQL

Main practical impact
§ implementation and evaluation of our approach
§ efficiency and usability at Siemens
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Next Steps in our Industrial Collaboration
Learning rules SDRL
§ How to learn (fragments) of SDRL?

Improving data quality of industrial KGs by
§ Learning Schemas over KGs (eg. SHACL constraints)
§ Learning mappings from DB to KGs
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