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Introduction

Complex networks
Curated knowledge (e.g.,
Ontologies)

Can we use the curated (background) knowledge to learn
better from networks?
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Knowledge graphs

Complex networks + semantic relations (e.g., BioMine1)

1Lauri Eronen and Hannu Toivonen. “Biomine: predicting links between biological entities using network
models of heterogeneous databases”. In: BMC bioinformatics 13.1 (2012), p. 119.
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Problem statement

Inputs

Given:

A knowledge graph (with relation-labeled edges)

A set of class-labeled target nodes

Outputs

An optimal decomposition of the knowledge graph with
respect to target nodes and a given task (e.g., node
classification)

Open problem: How to automatically exploit background
knowledge (relation-labeled edges) during learning?
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Network decomposition—HINMINE2 key idea

Identify directed paths of length two between the target
nodes of interest.
Construct weighted edges between target nodes.

Edge construction.

2Jan Kralj, Marko Robnik-ikonja, and Nada Lavra. “HINMINE: Heterogeneous information network mining
with information retrieval heuristics”. In: Journal of Intelligent Information Systems (2017), pp. 1–33.September 3, 2018 4/20
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Edge weight computation

More formally, given a heuristic function f , a weight of an
edge between the two nodes u and v is computed as

w(u, v) =
∑
m∈M

(u,m)∈E
(m,v)∈E

f (m);

where the f (m) represents the weight function and m an
intermediary node. Here, M represents the set of
intermediary nodes and E the set of a knowledge graph’s
edges.
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HINMINE and current state-of-the-art

Table 1: HINMINE term weighing schemes, tested for
decomposition of knowledge graphs and their corresponding
formulas in text mining.

Scheme Formula

tf f (t, d)

if-idf f (t, d) · log

(
|D|

|{d′ ∈ D : t ∈ d′}|

)

chi^2 f (t, d) ·
∑
c∈C

(P(t ∧ c)P(¬t ∧ ¬c) − P(t ∧ ¬c)P(¬t ∧ c))2

P(t)P(¬t)P(c)P(¬c)

ig f (t, d) ·
∑

c∈C,c′∈{c,¬c}t′∈{t,¬t}

(
P(t′, c′) · log

P(t′ ∧ c′)

P(t′)P(c′)

)

gr f (t, d) ·
∑
c∈C

∑
c′∈{c,¬c}

∑
t′∈{t,¬t}

(
P(t′, c′) · log P(t′∧c′)

P(t′)P(c′)

)
−
∑

c′∈{c,¬c} P(c) · log P(c)

delta-idf f (t, d) ·
∑
c∈C

(
log

|c|
|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|

− log
|¬c|

|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)

rf f (t, d) ·
∑
c∈C

log

(
2 +

|{d′ ∈ D : d′ ∈ c ∧ t ∈ d′}|
|{d′ ∈ D : d′ /∈ c ∧ t /∈ d′}|

)

bm25 f (t, d) · log

(
|D|

|{d′ ∈ D : t ∈ d′}|

)
·

k + 1

f (t, d) + k ·
(

1 − b + b · |d|
avgdl

)
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Towards end-to-end decomposition

HINMINE’s heuristics are comparable to state-of-the-art
methods, BUT

A Heuristic’s performance is dataset-dependent

Paths, used for decomposition are manually selected (many
possibilities)

In this paper we address the following questions:

Can we automate the heuristic selection?

Can decompositions be combined?

Is domain expert knowledge really needed for path
selection?

September 3, 2018 7/20
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Decomposition as stochastic optimization

Xopt = arg min
(d ,o,t)∈P(D)×S×P(T)

[
ρ(τ(d , o, t))

]
.

Where the:

(d , o, t) corresponds to paths, operators and heuristics
used

τ corresponds to decomposition computation

ρ represents a decomposition scoring function

Xopt is the optimal decomposition
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Combining decompositions

Set of heuristic combination operators. Let {h1, h2, . . . , hk}
be a set of matrices, obtained using different decomposition
heuristics. We propose four different heuristic combination
operators.

1 Element-wise sum. Let ⊕ denote elementwise matrix summation. Combined aggregated matrix is thus
defined as M = h1 ⊕ · · · ⊕ hk , a well defined expression as ⊕ represents a commutative and associative
operation.

2 Element-wise product. Let ⊗ denote elementwise product. Combined aggregated matrix is thus defined as
M = h1 ⊗ · · · ⊗ hk .

3 Normalized element-wise sum. Let ⊕ denote elementwise summation, and max(A) denote the largest
element of the matrix A. Combined aggregated matrix is thus defined as
M = 1

max(h1⊕···⊕hk )
(h1 ⊕ · · · ⊕ hk ). As ⊕ represents a commutative operation, this operator can be

generalized to arbitrary sets of heuristics without loss of generality.

4 Normalized element-wise product. Let ⊗ denote elementwise product, and max(A) denote the largest
element of the matrix A. Combined aggregated matrix is thus defined as
M = 1

max(h1⊗···⊗hk )
(h1 ⊗ · · · ⊗ hk ). This operator can also be generalized to arbitrary sets of

heuristics.
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Decomposition as stochastic optimization

Considering all possible paths + all possible heuristics +
combinations of different decompositions results in
combinatorial explosion.

Obtaining the optimal decomposition can also be
formulated as differential evolution:

A binary vector of size
|heuristics|+ |triplets|+ |combinationOP| is propagated
through the parametric space
final solution represents a unique decomposition

September 3, 2018 10/20
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Pseudocode of the approach

1 Select unique paths, heuristics and operators

2 evolve binary vector of solutions with respect to target task
(e.g., classification)

3 Upon final number of iterations/convergence etc., use the
vector to obtain dataset-specific decomposition

BUT, how are the node labels predicted (decompositions
scored)?

September 3, 2018 11/20
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P-PR and node prediction

Modern way: Prediction via subnetwork embeddings. We
compute P-PR vectors for individual target nodes, hence
obtaining |k |2 feature matrices, where |k | << |N|.
These matrices are used to learn the labels.

September 3, 2018 12/20
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P-PR embeddings

Figure 1: Personalized PageRank-based embedding. Repeated for
each node, this iteration yields a |k |2 matrix, directly usable for
learning tasks.
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P-PR general use

Node classification

We try to classify individual nodes into target class (es). Rel-
evant for e.g.,

Protein function prediction

Genre classification

Recommendation etc.

Function prediction Recommendation

September 3, 2018 14/20
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Datasets

IMDB dataset—genre classification

The main classification task related to this dataset corresponds
to classification of individual movie’s genres, based on actors,
directors and movies. Here, 300 nodes are labeled, whereas
the whole network consists of 6, 387 nodes and 14, 714 edges.
An example triplet yielding a valid decomposition for this dataset

is: Actor actsIn−−−→ Movie
directedBy−−−−−−→ Director .

Protein function prediction

The classification goal for this dataset is thus protein function
prediction3. The network consists of 2, 204 nodes and 2, 772
edges, 456 nodes are target (labeled) nodes.

Protein interactsWith−−−−−−−−→ Protein subsumes−−−−−−→ Protein.
3Sandra Orchard et al. “The MIntAct project–IntAct as a common curation platform for 11 molecular

interaction databases”. In: Nucleic Acids Research 42.Database issue (Jan. 2014), ISSN: 0305-1048. DOI:
10.1093/nar/gkt1115. URL: http://europepmc.org/articles/PMC3965093.
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Results (1)

Figure 2: Global optimum found for the IMDB dataset.
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Results (2)

The table of empirical results. The proposed approach was
tested against random decomposition selection.

Dataset Min F1 Max F1 Mean F1 Proposed approach DE Exhaustive search
IMDB 0.0315 0.0372 0.0346 0.0372 50min ≈ 22h

Epigenetics 0.0211 0.0296 0.0243 0.0284 6h > 1day

The result indicates significant speedups (20x) are possible
even if no domain knowledge is present.
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Example relations, relevant for classification

Epigenetics dataset (Target node = protein)

Protein contains−−−−−→ Domain contains−−−−−→ Protein

Protein interactsWith−−−−−−−−→ Protein subsumes−−−−−−→ Protein

Protein
belongsTo−−−−−−→ Family

belongsTo−−−−−−→ Protein

Protein isRelatedTo−−−−−−−→ Phenotype isRelatedTo−−−−−−−→ Protein

Protein interactsWith−−−−−−−−→ Protein interactsWith−−−−−−−−→ Protein

IMDB (Target node = movie):

Movie features−−−−−→ Person actsIn−−−→ Movie,
Movie

directedBy−−−−−−→ Person directed−−−−−→ Movie,
Movie features−−−−−→ Person directed−−−−−→ Movie.
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Conclusions and further work

One of the first end-to-end targeted decomposition
approaches

Used for classification task

Relation relevance discovery

Scalability (subnetworks in other domains)

Extensibility (GA, ant colonies . . . )

Generality of the approach (clustering?)

Further use?

September 3, 2018 19/20
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