Imperial College

The Complexity and Generality of Learning Answer Set Programs

(AIJ 2018)

Mark Law, Alessandra Russo and Krysia Broda

September 2, 2018

Imperial College

ILP under the Answer Set Semantics

- Several ILP frameworks have been proposed to learn ASP:
- In $I L P_{b}\left(\right.$ resp $\left.I L P_{c}\right)$ at least one (resp every) answer set of $B \cup H$ must cover the (atom) examples.
- In $I L P_{L A S}$ examples are partial interpretations and a combination of $I L P_{b}$ and $I L P_{c}$ can be expressed.

Imperial College London

ILP under the Answer Set Semantics

- Several ILP frameworks have been proposed to learn ASP:
- In $I L P_{b}\left(\right.$ resp $\left.I L P_{c}\right)$ at least one (resp every) answer set of $B \cup H$ must cover the (atom) examples.
- In ILP $P_{\text {LAS }}$ examples are partial interpretations and a combination of $I L P_{b}$ and $I L P_{c}$ can be expressed.
- This paper asks two fundamental questions:
- What class of ASP programs can each framework learn?
- Is there any (complexity) price paid by the more general frameworks?

Imperial College London

ILP under the Answer Set Semantics

- Several ILP frameworks have been proposed to learn ASP:
- In $I L P_{b}\left(\right.$ resp $\left.I L P_{c}\right)$ at least one (resp every) answer set of $B \cup H$ must cover the (atom) examples.
- In ILP $P_{\text {LAS }}$ examples are partial interpretations and a combination of $I L P_{b}$ and $I L P_{c}$ can be expressed.
- This paper asks two fundamental questions:
- What class of ASP programs can each framework learn?
- Is there any (complexity) price paid by the more general frameworks?
- In the paper we also consider $I L P_{s m}, I L P_{\text {LOAS }}$ and $I L P_{\text {LOAS }}^{\text {context }}$.

Imperial College

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

Imperial College London

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

- $\mathcal{D}_{1}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H_{1}, H_{2}\right\rangle$ such that \mathcal{F} can distinguish H_{1} from H_{2} wrt B.

Imperial College

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

- $\mathcal{D}_{1}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H_{1}, H_{2}\right\rangle$ such that \mathcal{F} can distinguish H_{1} from H_{2} wrt B.

Let $B=\emptyset, H_{1}=\{p$.$\} and H_{2}=\{0\{p\} 1$.$\} .$

- $\left\langle B, H_{1}, H_{2}\right\rangle$ is not in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.

Imperial College London

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

- $\mathcal{D}_{1}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H_{1}, H_{2}\right\rangle$ such that \mathcal{F} can distinguish H_{1} from H_{2} wrt B.

Let $B=\emptyset, H_{1}=\{p$.$\} and H_{2}=\{0\{p\} 1$.$\} .$

- $\left\langle B, H_{1}, H_{2}\right\rangle$ is not in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.
$E^{+}=\{\mathrm{p}\}$
$E^{-}=\emptyset$
$H_{2} \in \operatorname{IL} P_{b}(\langle B,\{p\}, \emptyset\rangle)$.

Imperial College London

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

- $\mathcal{D}_{1}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H_{1}, H_{2}\right\rangle$ such that \mathcal{F} can distinguish H_{1} from H_{2} wrt B.

Let $B=\emptyset, H_{1}=\{p$.$\} and H_{2}=\{0\{p\} 1$.$\} .$

- $\left\langle B, H_{1}, H_{2}\right\rangle$ is not in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.
- $\left\langle B, H_{2}, H_{1}\right\rangle$ is in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.

Imperial College London

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

- $\mathcal{D}_{1}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H_{1}, H_{2}\right\rangle$ such that \mathcal{F} can distinguish H_{1} from H_{2} wrt B.

Let $B=\emptyset, H_{1}=\{p$.$\} and H_{2}=\{0\{p\} 1$.$\} .$

- $\left\langle B, H_{1}, H_{2}\right\rangle$ is not in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.
- $\left\langle B, H_{2}, H_{1}\right\rangle$ is in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.

$$
E^{+}=\emptyset \quad E^{-}=\{p\}
$$

$H_{2} \in I L P_{b}(\langle B, \emptyset,\{\mathrm{p}\}\rangle)$ but $H_{1} \notin I L P_{b}(\langle B, \emptyset,\{\mathrm{p}\}\rangle)$.

Imperial College London

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

- $\mathcal{D}_{1}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H_{1}, H_{2}\right\rangle$ such that \mathcal{F} can distinguish H_{1} from H_{2} wrt B.

Let $B=\emptyset, H_{1}=\{p$.$\} and H_{2}=\{0\{p\} 1$.$\} .$

- $\left\langle B, H_{1}, H_{2}\right\rangle$ is not in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.
- $\left\langle B, H_{2}, H_{1}\right\rangle$ is in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.
- $\left\langle B, H_{1}, H_{2}\right\rangle$ is in $\mathcal{D}_{1}^{1}\left(I L P_{c}\right)$.

Imperial College London

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_{1} from H_{2} wrt B iff there is at least one task $T_{\mathcal{F}}=\left\langle B, E_{\mathcal{F}}\right\rangle$ such that $H_{1} \in \mathcal{F}\left(T_{\mathcal{F}}\right)$ and $H_{2} \notin \mathcal{F}\left(T_{\mathcal{F}}\right)$.

- $\mathcal{D}_{1}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H_{1}, H_{2}\right\rangle$ such that \mathcal{F} can distinguish H_{1} from H_{2} wrt B.

Let $B=\emptyset, H_{1}=\{p$.$\} and H_{2}=\{0\{p\} 1$.$\} .$

- $\left\langle B, H_{1}, H_{2}\right\rangle$ is not in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.
- $\left\langle B, H_{2}, H_{1}\right\rangle$ is in $\mathcal{D}_{1}^{1}\left(I L P_{b}\right)$.
- $\left\langle B, H_{1}, H_{2}\right\rangle$ is in $\mathcal{D}_{1}^{1}\left(I L P_{c}\right)$.

$$
E^{+}=\{\mathrm{p}\} \quad E^{-}=\emptyset
$$

$H_{1} \in I L P_{c}(\langle B, \emptyset,\{\mathrm{p}\}\rangle)$ but $H_{2} \notin I L P_{c}(\langle B, \emptyset,\{\mathrm{p}\}\rangle)$.

Imperial College

One-to-one Distinguishability Conditions

Framework \mathcal{F}	Sufficient/necessary condition for $\left\langle B, H_{1}, H_{2}\right\rangle$ to be in $\mathcal{D}_{1}^{1}(\mathcal{F})$
$I L P_{b}$	$A S\left(B \cup H_{1}\right) \notin A S\left(B \cup H_{2}\right)$
$I L P_{s m}$	$A S\left(B \cup H_{1}\right) \notin A S\left(B \cup H_{2}\right)$
$I L P_{c}$	$A S\left(B \cup H_{1}\right) \neq \emptyset \wedge\left(A S\left(B \cup H_{2}\right)=\emptyset \vee\left(\mathcal{E}_{c}\left(B \cup H_{1}\right) \notin \mathcal{E}_{c}\left(B \cup H_{2}\right)\right)\right)$
$I L P_{L A S}$	$A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)$
$I L P_{L O A S}$	$\left(A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)\right) \vee\left(\operatorname{ord}\left(B \cup H_{1}\right) \neq \operatorname{ord}\left(B \cup H_{2}\right)\right)$
$I L P_{L O A S}^{\text {context }}$	$\left(B \cup H_{1} \not \equiv^{s} B \cup H_{2}\right) \vee$
	$\left(\exists C \in \mathcal{A S P}{ }^{c h}\right.$ st ord $\left.\left(B \cup H_{1} \cup C\right) \neq \operatorname{ord}\left(B \cup H_{2} \cup C\right)\right)$

Imperial College

One-to-one Distinguishability Conditions

Framework \mathcal{F}	Sufficient/necessary condition for $\left\langle B, H_{1}, H_{2}\right\rangle$ to be in $\mathcal{D}_{1}^{1}(\mathcal{F})$
$I L P_{b}$	$A S\left(B \cup H_{1}\right) \notin A S\left(B \cup H_{2}\right)$
$I L P_{s m}$	$A S\left(B \cup H_{1}\right) \nsubseteq A S\left(B \cup H_{2}\right)$
$I L P_{c}$	$A S\left(B \cup H_{1}\right) \neq \emptyset \wedge\left(A S\left(B \cup H_{2}\right)=\emptyset \vee\left(\mathcal{E}_{c}\left(B \cup H_{1}\right) \notin \mathcal{E}_{c}\left(B \cup H_{2}\right)\right)\right)$
$I L P_{L A S}$	$A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)$
$I L P_{L O A S}$	$\left(A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)\right) \vee\left(\operatorname{ord}\left(B \cup H_{1}\right) \neq \operatorname{ord}\left(B \cup H_{2}\right)\right)$
$I L P_{L O A S}^{\text {context }}$	$\left(B \cup H_{1} \not \equiv^{s} B \cup H_{2}\right) \vee$
	$\left(\exists C \in \mathcal{A S P}{ }^{c h}\right.$ st $\left.\operatorname{ord}\left(B \cup H_{1} \cup C\right) \neq \operatorname{ord}\left(B \cup H_{2} \cup C\right)\right)$

- Neither $I L P_{b}$ of $I L P_{s m}$ can distinguish $H \cup C$ from H for any constraint C and any H - in practice, neither $l L P_{b}$ nor $I L P_{s m}$ can learn constraints.

Imperial College

One-to-one Distinguishability Conditions

Framework \mathcal{F}	Sufficient/necessary condition for $\left\langle B, H_{1}, H_{2}\right\rangle$ to be in $\mathcal{D}_{1}^{1}(\mathcal{F})$
$I L P_{b}$	$A S\left(B \cup H_{1}\right) \notin A S\left(B \cup H_{2}\right)$
$I L P_{s m}$	$A S\left(B \cup H_{1}\right) \notin A S\left(B \cup H_{2}\right)$
$I L P_{c}$	$A S\left(B \cup H_{1}\right) \neq \emptyset \wedge\left(A S\left(B \cup H_{2}\right)=\emptyset \vee\left(\mathcal{E}_{c}\left(B \cup H_{1}\right) \notin \mathcal{E}_{c}\left(B \cup H_{2}\right)\right)\right)$
$I L P_{L A S}$	$A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)$
$I L P_{L O A S}$	$\left(A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)\right) \vee\left(\operatorname{ord}\left(B \cup H_{1}\right) \neq \operatorname{ord}\left(B \cup H_{2}\right)\right)$
$I L P_{L O A S}^{\text {context }}$	$\left(B \cup H_{1} \not \equiv^{s} B \cup H_{2}\right) \vee$
	$\left(\exists C \in \mathcal{A S P}{ }^{c h}\right.$ st $\left.\operatorname{ord}\left(B \cup H_{1} \cup C\right) \neq \operatorname{ord}\left(B \cup H_{2} \cup C\right)\right)$

- ILP $P_{\text {LAS }}$ can distinguish any two hypotheses, so long as they have different answer sets (when combined with B).

Imperial College London

One-to-one Distinguishability Conditions

Framework \mathcal{F}	Sufficient/necessary condition for $\left\langle B, H_{1}, H_{2}\right\rangle$ to be in $\mathcal{D}_{1}^{1}(\mathcal{F})$
$I L P_{b}$	$A S\left(B \cup H_{1}\right) \nsubseteq A S\left(B \cup H_{2}\right)$
$I L P_{s m}$	$A S\left(B \cup H_{1}\right) \nsubseteq A S\left(B \cup H_{2}\right)$
$I L P_{c}$	$A S\left(B \cup H_{1}\right) \neq \emptyset \wedge\left(A S\left(B \cup H_{2}\right)=\emptyset \vee\left(\mathcal{E}_{c}\left(B \cup H_{1}\right) \nsubseteq \mathcal{E}_{c}\left(B \cup H_{2}\right)\right)\right)$
$I L P_{L A S}$	$A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)$
$I L P_{L O A S}$	$\left(A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)\right) \vee\left(\operatorname{ord}\left(B \cup H_{1}\right) \neq \operatorname{ord}\left(B \cup H_{2}\right)\right)$
$I L P_{\text {LOAS }}^{\text {context }}$	$\left(B \cup H_{1} \not \equiv^{s} B \cup H_{2}\right) \vee$
	$\left(\exists C \in \mathcal{A S P}{ }^{c h}\right.$ st $\left.\operatorname{ord}\left(B \cup H_{1} \cup C\right) \neq \operatorname{ord}\left(B \cup H_{2} \cup C\right)\right)$

- ILP $P_{\text {LOAS }}^{\text {context }}$ can distinguish any two hypotheses, so long as they are not strongly equivalent (when combined with B).

Imperial College
 London

One-to-one Distinguishability Conditions

Framework \mathcal{F}	Sufficient/necessary condition for $\left\langle B, H_{1}, H_{2}\right\rangle$ to be in $\mathcal{D}_{1}^{1}(\mathcal{F})$
$I L P_{b}$	$A S\left(B \cup H_{1}\right) \notin A S\left(B \cup H_{2}\right)$
$I L P_{s m}$	$A S\left(B \cup H_{1}\right) \notin A S\left(B \cup H_{2}\right)$
$I L P_{c}$	$A S\left(B \cup H_{1}\right) \neq \emptyset \wedge\left(A S\left(B \cup H_{2}\right)=\emptyset \vee\left(\mathcal{E}_{c}\left(B \cup H_{1}\right) \notin \mathcal{E}_{c}\left(B \cup H_{2}\right)\right)\right)$
$I L P_{L A S}$	$A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)$
$I L P_{L O A S}$	$\left(A S\left(B \cup H_{1}\right) \neq A S\left(B \cup H_{2}\right)\right) \vee\left(\operatorname{ord}\left(B \cup H_{1}\right) \neq \operatorname{ord}\left(B \cup H_{2}\right)\right)$
$I L P_{L O A S}^{\text {context }}$	$\left(B \cup H_{1} \not \equiv^{s} B \cup H_{2}\right) \vee$
	$\left(\exists C \in \mathcal{A S P}{ }^{c h}\right.$ st ord $\left.\left(B \cup H_{1} \cup C\right) \neq \operatorname{ord}\left(B \cup H_{2} \cup C\right)\right)$

$$
\begin{aligned}
& \mathcal{D}_{1}^{1}\left(I L P_{b}\right)=\mathcal{D}_{1}^{1}\left(I L P_{s m}\right) \subset \mathcal{D}_{1}^{1}\left(I L P_{L A S}\right) \subset \mathcal{D}_{1}^{1}\left(I L P_{L O A S}\right) \subset \mathcal{D}_{1}^{1}\left(I L P_{\text {LOAS }}^{\text {context }}\right) \\
& \mathcal{D}_{1}^{1}\left(I L P_{c}\right) \subset \mathcal{D}_{1}^{1}\left(I L P_{L A S}\right)
\end{aligned}
$$

Imperial College

One-to-many Distinguishability

Definition 2

For a framework $\mathcal{F}, \mathcal{D}_{m}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H,\left\{H_{1}, \ldots, H_{n}\right\}\right\rangle$ st there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_{i} with respect to B.

Imperial College
 London

One-to-many Distinguishability

Definition 2

For a framework $\mathcal{F}, \mathcal{D}_{m}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H,\left\{H_{1}, \ldots, H_{n}\right\}\right\rangle$ st there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_{i} with respect to B.

Let $B=\emptyset, H=\{1\{$ heads, tails $\} 1\},. H_{1}^{\prime}=\{$ heads. $\}, H_{2}^{\prime}=\{$ tails. $\}$

- $\left\langle B, H, H_{1}^{\prime}\right\rangle \in \mathcal{D}_{1}^{1}\left(I L P_{b}\right)$ and $\left\langle B, H, H_{2}^{\prime}\right\rangle \in \mathcal{D}_{1}^{1}\left(I L P_{b}\right)$

Imperial College
 London

One-to-many Distinguishability

Definition 2

For a framework $\mathcal{F}, \mathcal{D}_{m}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H,\left\{H_{1}, \ldots, H_{n}\right\}\right\rangle$ st there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_{i} with respect to B.

Let $B=\emptyset, H=\{1\{$ heads, tails $\} 1\},. H_{1}^{\prime}=\{$ heads. $\}, H_{2}^{\prime}=\{$ tails. $\}$

- $\left\langle B, H, H_{1}^{\prime}\right\rangle \in \mathcal{D}_{1}^{1}\left(I L P_{b}\right)$ and $\left\langle B, H, H_{2}^{\prime}\right\rangle \in \mathcal{D}_{1}^{1}\left(I L P_{b}\right)$
- $\left\langle B, H,\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}\right\rangle \notin \mathcal{D}_{m}^{1}\left(I L P_{b}\right)$

Imperial College
 London

One-to-many Distinguishability

Definition 2

For a framework $\mathcal{F}, \mathcal{D}_{m}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H,\left\{H_{1}, \ldots, H_{n}\right\}\right\rangle$ st there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_{i} with respect to B.

Let $B=\emptyset, H=\{1$ heads, tails $\} 1.\}, H_{1}^{\prime}=\{$ heads. $\}, H_{2}^{\prime}=\{$ tails. $\}$

- $\left\langle B, H, H_{1}^{\prime}\right\rangle \in \mathcal{D}_{1}^{1}\left(I L P_{b}\right)$ and $\left\langle B, H, H_{2}^{\prime}\right\rangle \in \mathcal{D}_{1}^{1}\left(I L P_{b}\right)$
- $\left\langle B, H,\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}\right\rangle \notin \mathcal{D}_{m}^{1}\left(I L P_{b}\right)$
- $\left\langle B, H,\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}\right\rangle \in \mathcal{D}_{m}^{1}\left(I L P_{s m}\right)$

Imperial College
 London

One-to-many Distinguishability

Definition 2

For a framework $\mathcal{F}, \mathcal{D}_{m}^{1}(\mathcal{F})$ is the set of tuples $\left\langle B, H,\left\{H_{1}, \ldots, H_{n}\right\}\right\rangle$ st there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_{i} with respect to B.

$$
\mathcal{D}_{m}^{1}\left(I L P_{b}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{s m}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L A S}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L O A S}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L O A S}^{\text {context }}\right)
$$

$$
\mathcal{D}_{m}^{1}\left(I L P_{c}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L A S}\right)
$$

Imperial College
 London

Many-to-many Distinguishability

Definition 3

For a framework $\mathcal{F}, \mathcal{D}_{m}^{m}(\mathcal{F})$ is the set of tuples $\left\langle B, S_{1}, S_{2}\right\rangle$, st there is a task $T_{\mathcal{F}}$ with background B, st $S_{1} \subseteq I L P_{\mathcal{F}}\left(T_{\mathcal{F}}\right)$ and $S_{2} \cap I L P_{\mathcal{F}}\left(T_{\mathcal{F}}\right)=\emptyset$.

Imperial College
 London

Many-to-many Distinguishability

Definition 3

For a framework $\mathcal{F}, \mathcal{D}_{m}^{m}(\mathcal{F})$ is the set of tuples $\left\langle B, S_{1}, S_{2}\right\rangle$, st there is a task $T_{\mathcal{F}}$ with background B, st $S_{1} \subseteq I L P_{\mathcal{F}}\left(T_{\mathcal{F}}\right)$ and $S_{2} \cap I L P_{\mathcal{F}}\left(T_{\mathcal{F}}\right)=\emptyset$.

$$
\begin{aligned}
& \mathcal{D}_{m}^{m}\left(I L P_{b}\right) \subset \mathcal{D}_{m}^{m}\left(I L P_{s m}\right) \subset \mathcal{D}_{m}^{m}\left(I L P_{L A S}\right) \subset \mathcal{D}_{m}^{m}\left(I L P_{L O A S}\right) \subset \mathcal{D}_{m}^{m}\left(I L P_{\text {LOAAS }}^{\text {cont }}\right) \\
& \mathcal{D}_{m}^{m}\left(I L P_{c}\right) \subset \mathcal{D}_{m}^{m}\left(I L P_{L A S}\right)
\end{aligned}
$$

Imperial College

Complexity

Framework	Verification	Satisfiablity
$I L P_{b}$	$N P$-complete	$N P$-complete
$I L P_{s m}$	$N P$-complete	$N P$-complete
$I L P_{c}$	$D P$-complete	Σ_{2}^{P}-complete
$I L P_{\text {LAS }}$	$D P$-complete	Σ_{2}^{P}-complete
$I L P_{\text {LOAS }}$	$D P$-complete	Σ_{2}^{P}-complete
$I L P_{\text {LOAS }}^{\text {contex }}$	$D P$-complete	Σ_{2}^{P}-complete

Imperial College

Complexity

Framework	Verification	Satisfiablity
$I L P_{b}$	$N P$-complete	$N P$-complete
$I L P_{s m}$	$N P$-complete	$N P$-complete
$I L P_{c}$	$D P$-complete	Σ_{2}^{P}-complete
$I L P_{\text {LAS }}$	$D P$-complete	Σ_{2}^{P}-complete
$I L P_{\text {LOAS }}$	$D P$-complete	Σ_{2}^{P}-complete
$I L P_{\text {LOAS }}^{\text {context }}$	$D P$-complete	Σ_{2}^{P}-complete
$I L P_{\text {LOAS }}^{\text {noise }}$	$D P$-complete	Σ_{2}^{P}-complete

Imperial College

Conclusion

- We have introduced three new measures of the generality of a learning framework.
- For each of the three measures:
$\mathcal{D}\left(I L P_{b}\right) \subseteq \mathcal{D}\left(I L P_{s m}\right) \subset \mathcal{D}\left(I L P_{L A S}\right) \subset \mathcal{D}\left(I L P_{\text {LOAS }}\right) \subset \mathcal{D}\left(I L P_{\text {LOAS }}^{\text {context }}\right)$
$\mathcal{D}\left(I L P_{c}\right) \subset \mathcal{D}\left(I L P_{\text {LAS }}\right)$
- There is no price to be paid (in terms of complexity) for the gain in generality of $I L P_{\text {LOAS }}^{\text {context }}$ over $I L P_{c}$.
- $I L P_{b}$ and $I L P_{s m}$ are of lower complexity, but are less general than $I L P_{\text {LAS }}$.

Imperial College London

Backup Slides

Imperial College

One-to-many Distinguishability

- In the paper, we proved that if for any two \mathcal{F} tasks T_{1}, T_{2} there is a task T_{3} such that $I L P_{\mathcal{F}}\left(T_{3}\right)=I L P_{\mathcal{F}}\left(T_{1}\right) \cap I L P_{\mathcal{F}}\left(T_{2}\right)$ then:

$$
\mathcal{D}_{m}^{1}(\mathcal{F})=\left\{\begin{array}{l|l}
\left\langle B, H,\left\{H_{1}, \ldots, H_{n}\right\}\right\rangle & \begin{array}{c}
\left\langle B, H, H_{1}\right\rangle \in \mathcal{D}_{1}^{1}(\mathcal{F}), \\
\ldots \\
\left\langle B, H, H_{n}\right\rangle \in \mathcal{D}_{1}^{1}(\mathcal{F})
\end{array}
\end{array}\right\} .
$$

- In $I L P_{L A S}, T_{3}$ can be constructed as $\left\langle B, E_{1}^{+} \cup E_{2}^{+}, E_{1}^{-} \cup E_{2}^{-}\right\rangle$.
- This property holds for every framework (in the paper) other than $I L P_{b}$.

$$
\begin{aligned}
& \mathcal{D}_{m}^{1}\left(I L P_{b}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{s m}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L A S}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L O A S}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L O A S}^{\text {context }}\right) \\
& \mathcal{D}_{m}^{1}\left(I L P_{c}\right) \subset \mathcal{D}_{m}^{1}\left(I L P_{L A S}\right)
\end{aligned}
$$

Imperial College

Brave Induction cannot learn constraints

- Let H be a hypothesis and C be a constraint.
- For any $T=\left\langle B, E^{+}, E^{-}\right\rangle$st $H \cup C \in I L P_{b}(T)$, there is an $A \in A S(B \cup H \cup C)$ st $E^{+} \subseteq A$ and $E^{-} \cap A=\emptyset$.

Any such A is also an answer set of $B \cup H$.

- Hence $I L P_{b}$ cannot distinguish $H \cup C$ from H (wrt any background knowledge).
- In practice this means that $I L P_{b}$ cannot learn constraints.

Imperial College

Other notion of generality

- (De Raedt 1997) defined generality in terms of reductions. \mathcal{F}_{1} is said to be more general than \mathcal{F}_{2} iff $\mathcal{F}_{2} \rightarrow_{r} \mathcal{F}_{1}$ and $\mathcal{F}_{1} \nrightarrow 力_{r} \mathcal{F}_{2}$.
- These reductions allowed the background knowledge B to be modified in the reduction, whereas distinguishability does not.
- In the paper we define strong reductions which force the background knowledge to be the same and show that $\mathcal{F}_{1} \rightarrow_{s r} \mathcal{F}_{2}$ if and only if $\mathcal{D}_{m}^{m}\left(\mathcal{F}_{1}\right) \subseteq \mathcal{D}_{m}^{m}\left(\mathcal{F}_{2}\right)$.
- Other than the restriction on the background knowledge, distinguishability also allows for fine grained comparisons of frameworks which are incomparable under reductions and strong reductions.

Imperial College
 London

De Raedt, L. 1997.Logical settings for concept-learning.
Artificial Intelligence 95, 1, 187-201.

