The Complexity and Generality of Learning Answer Set Programs

(AIJ 2018)

Mark Law, Alessandra Russo and Krysia Broda

September 2, 2018

ILP under the Answer Set Semantics

- Several ILP frameworks have been proposed to learn ASP:
 - In *ILP_b* (resp *ILP_c*) at least one (resp every) answer set of B ∪ H must cover the (atom) examples.
 - ► In *ILP_{LAS}* examples are partial interpretations and a combination of *ILP_b* and *ILP_c* can be expressed.

ILP under the Answer Set Semantics

- Several ILP frameworks have been proposed to learn ASP:
 - In *ILP_b* (resp *ILP_c*) at least one (resp every) answer set of B ∪ H must cover the (atom) examples.
 - ► In *ILP_{LAS}* examples are partial interpretations and a combination of *ILP_b* and *ILP_c* can be expressed.
- This paper asks two fundamental questions:
 - What class of ASP programs can each framework learn?
 - Is there any (complexity) price paid by the more general frameworks?

ILP under the Answer Set Semantics

- Several ILP frameworks have been proposed to learn ASP:
 - In *ILP_b* (resp *ILP_c*) at least one (resp every) answer set of B ∪ H must cover the (atom) examples.
 - ► In *ILP_{LAS}* examples are partial interpretations and a combination of *ILP_b* and *ILP_c* can be expressed.
- This paper asks two fundamental questions:
 - What class of ASP programs can each framework learn?
 - Is there any (complexity) price paid by the more general frameworks?
- ▶ In the paper we also consider *ILP_{sm}*, *ILP_{LOAS}* and *ILP^{context}*.

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

3/8

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

▶ $\mathcal{D}_1^1(\mathcal{F})$ is the set of tuples $\langle B, H_1, H_2 \rangle$ such that \mathcal{F} can distinguish H_1 from H_2 wrt B.

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

▶ D¹₁(F) is the set of tuples (B, H₁, H₂) such that F can distinguish H₁ from H₂ wrt B.

Let $B = \emptyset$, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

• $\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}_1^1(ILP_b)$.

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

▶ $\mathcal{D}_1^1(\mathcal{F})$ is the set of tuples $\langle B, H_1, H_2 \rangle$ such that \mathcal{F} can distinguish H_1 from H_2 wrt B.

Let
$$B = \emptyset$$
, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

•
$$\langle B, H_1, H_2 \rangle$$
 is not in $\mathcal{D}_1^1(ILP_b)$.

$$E^+ = \{p\}$$
 $E^- = \emptyset$

$$H_2 \in ILP_b(\langle B, \{p\}, \emptyset \rangle).$$

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

- ▶ D¹₁(F) is the set of tuples (B, H₁, H₂) such that F can distinguish H₁ from H₂ wrt B.
- Let $B = \emptyset$, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.
 - $\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}_1^1(ILP_b)$.
 - $\langle B, H_2, H_1 \rangle$ is in $\mathcal{D}_1^1(ILP_b)$.

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

▶ D¹₁(F) is the set of tuples (B, H₁, H₂) such that F can distinguish H₁ from H₂ wrt B.

Let
$$B = \emptyset$$
, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

$$\blacktriangleright \langle B, H_1, H_2 \rangle \text{ is not in } \mathcal{D}_1^1(ILP_b).$$

 $\blacktriangleright \langle B, H_2, H_1 \rangle \text{ is in } \mathcal{D}_1^1(ILP_b).$

$$E^+ = \emptyset$$
 $E^- = \{p\}$

 $H_2 \in ILP_b(\langle B, \emptyset, \{p\}\rangle)$ but $H_1 \notin ILP_b(\langle B, \emptyset, \{p\}\rangle)$.

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

▶ D¹₁(F) is the set of tuples (B, H₁, H₂) such that F can distinguish H₁ from H₂ wrt B.

Let
$$B = \emptyset$$
, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

- $\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}_1^1(ILP_b)$.
- $\langle B, H_2, H_1 \rangle$ is in $\mathcal{D}_1^1(ILP_b)$.
- $\blacktriangleright \langle B, H_1, H_2 \rangle \text{ is in } \mathcal{D}_1^1(ILP_c).$

One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

▶ D¹₁(F) is the set of tuples (B, H₁, H₂) such that F can distinguish H₁ from H₂ wrt B.

Let
$$B = \emptyset$$
, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

- $\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}_1^1(ILP_b)$.
- $\blacktriangleright \langle B, H_2, H_1 \rangle \text{ is in } \mathcal{D}_1^1(ILP_b).$
- $\blacktriangleright \langle B, H_1, H_2 \rangle \text{ is in } \mathcal{D}_1^1(ILP_c).$

 $E^+ = \{p\}$ $E^- = \emptyset$

 $H_1 \in ILP_c(\langle B, \emptyset, \{p\}\rangle) \text{ but } H_2 \not\in ILP_c(\langle B, \emptyset, \{p\}\rangle).$

One-to-one Distinguishability Conditions

$Framework\ \mathcal{F}$	Sufficient/necessary condition for $\langle B, H_1, H_2 angle$ to be in $\mathcal{D}^1_1(\mathcal{F})$	
ILP _b	$\mathit{AS}(B\cup \mathit{H}_1) \not \subseteq \mathit{AS}(B\cup \mathit{H}_2)$	
ILP _{sm}	$\mathit{AS}(B\cup \mathit{H}_1) \not\subseteq \mathit{AS}(B\cup \mathit{H}_2)$	
ILP _c	$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (\mathcal{E}_c(B \cup H_1) \not\subseteq \mathcal{E}_c(B \cup H_2)))$	
ILP _{LAS}	$AS(B\cup H_1)\neq AS(B\cup H_2)$	
ILP _{LOAS}	$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (ord(B \cup H_1) \neq ord(B \cup H_2))$	
ILP ^{context}	$(B\cup H_1\not\equiv^s B\cup H_2)\vee$	
	$(\exists \mathcal{C} \in \mathcal{ASP}^{ch} ext{ st } ord(B \cup H_1 \cup \mathcal{C}) eq ord(B \cup H_2 \cup \mathcal{C}))$	

One-to-one Distinguishability Conditions

$Framework\ \mathcal{F}$	Sufficient/necessary condition for $\langle B, H_1, H_2 angle$ to be in $\mathcal{D}^1_1(\mathcal{F})$	
ILP _b	$AS(B\cup H_1) \not\subseteq AS(B\cup H_2)$	
ILP _{sm}	$AS(B\cup H_1) \not\subseteq AS(B\cup H_2)$	
ILP _c	$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (\mathcal{E}_c(B \cup H_1) \not\subseteq \mathcal{E}_c(B \cup H_2)))$	
ILP _{LAS}	$AS(B\cup H_1)\neq AS(B\cup H_2)$	
ILP _{LOAS}	$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (ord(B \cup H_1) \neq ord(B \cup H_2))$	
ILP ^{context} LOAS	$(B\cup H_1\not\equiv^s B\cup H_2)\vee$	
	$(\exists C \in \mathcal{ASP}^{ch} ext{ st ord}(B \cup H_1 \cup C) \neq ord(B \cup H_2 \cup C))$	

Neither *ILP_b* of *ILP_{sm}* can distinguish *H* ∪ *C* from *H* for any constraint *C* and any *H* − in practice, neither *ILP_b* nor *ILP_{sm}* can learn constraints.

One-to-one Distinguishability Conditions

$Framework\ \mathcal{F}$	Sufficient/necessary condition for $\langle B, H_1, H_2 angle$ to be in $\mathcal{D}^1_1(\mathcal{F})$	
ILP _b	$AS(B\cup H_1) \not\subseteq AS(B\cup H_2)$	
ILP _{sm}	$AS(B\cup H_1) \not\subseteq AS(B\cup H_2)$	
ILP _c	$AS(B\cup H_1)\neq \emptyset \land (AS(B\cup H_2)=\emptyset \lor (\mathcal{E}_c(B\cup H_1) \not\subseteq \mathcal{E}_c(B\cup H_2)))$	
ILP _{LAS}	$AS(B \cup H_1) \neq AS(B \cup H_2)$	
ILP _{LOAS}	$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (ord(B \cup H_1) \neq ord(B \cup H_2))$	
ILP ^{context} LOAS	$(B\cup H_1\not\equiv^s B\cup H_2)\vee$	
	$(\exists C \in \mathcal{ASP}^{ch} ext{ st ord}(B \cup H_1 \cup C) eq \textit{ord}(B \cup H_2 \cup C))$	

ILP_{LAS} can distinguish any two hypotheses, so long as they have different answer sets (when combined with *B*).

One-to-one Distinguishability Conditions

$Framework\ \mathcal{F}$	Sufficient/necessary condition for $\langle B, H_1, H_2 angle$ to be in $\mathcal{D}_1^1(\mathcal{F})$	
ILP _b	$\mathit{AS}(B\cup \mathit{H}_1) \not\subseteq \mathit{AS}(B\cup \mathit{H}_2)$	
ILP _{sm}	$AS(B\cup H_1) \not\subseteq AS(B\cup H_2)$	
ILP _c	$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (\mathcal{E}_c(B \cup H_1) \not\subseteq \mathcal{E}_c(B \cup H_2)))$	
ILP _{LAS}	$AS(B\cup H_1)\neq AS(B\cup H_2)$	
ILP _{LOAS}	$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (ord(B \cup H_1) \neq ord(B \cup H_2))$	
ILP ^{context} LOAS	$(B\cup H_1\not\equiv^s B\cup H_2)\vee$	
	$(\exists {\it C} \in {\cal ASP}^{ch} ext{ st ord}({\it B} \cup {\it H}_1 \cup {\it C}) e ord({\it B} \cup {\it H}_2 \cup {\it C}))$	

 ILP^{context}_{LOAS} can distinguish any two hypotheses, so long as they are not strongly equivalent (when combined with B).

One-to-one Distinguishability Conditions

Framework ${\cal F}$	Sufficient/necessary condition for $\langle B, H_1, H_2 angle$ to be in $\mathcal{D}^1_1(\mathcal{F})$	
ILP _b	$AS(B\cup H_1) \not\subseteq AS(B\cup H_2)$	
ILP _{sm}	$AS(B\cup H_1) \not\subseteq AS(B\cup H_2)$	
ILP _c	$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (\mathcal{E}_c(B \cup H_1) \not\subseteq \mathcal{E}_c(B \cup H_2)))$	
ILP _{LAS}	$AS(B\cup H_1)\neq AS(B\cup H_2)$	
ILP _{LOAS}	$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (ord(B \cup H_1) \neq ord(B \cup H_2))$	
ILP ^{context} LOAS	$(B\cup H_1\not\equiv^s B\cup H_2)\vee$	
	$(\exists \mathcal{C} \in \mathcal{ASP}^{ch} ext{ st ord}(B \cup H_1 \cup \mathcal{C}) eq \textit{ord}(B \cup H_2 \cup \mathcal{C}))$	

 $\mathcal{D}_{1}^{1}(ILP_{b}) = \mathcal{D}_{1}^{1}(ILP_{sm}) \subset \mathcal{D}_{1}^{1}(ILP_{LAS}) \subset \mathcal{D}_{1}^{1}(ILP_{LOAS}) \subset \mathcal{D}_{1}^{1}(ILP_{LOAS})$ $\mathcal{D}_{1}^{1}(ILP_{c}) \subset \mathcal{D}_{1}^{1}(ILP_{LAS})$

One-to-many Distinguishability

Definition 2

One-to-many Distinguishability

Definition 2

Let
$$B = \emptyset$$
, $H = \{1\{\text{heads}, \texttt{tails}\}1\}$, $H'_1 = \{\text{heads.}\}$, $H'_2 = \{\texttt{tails.}\}$

►
$$\langle B, H, H'_1 \rangle \in \mathcal{D}^1_1(ILP_b)$$
 and $\langle B, H, H'_2 \rangle \in \mathcal{D}^1_1(ILP_b)$

One-to-many Distinguishability

Definition 2

Let
$$B = \emptyset$$
, $H = \{1\{\text{heads}, \texttt{tails}\}1\}$, $H'_1 = \{\text{heads.}\}$, $H'_2 = \{\texttt{tails.}\}$

►
$$\langle B, H, H'_1 \rangle \in \mathcal{D}^1_1(ILP_b)$$
 and $\langle B, H, H'_2 \rangle \in \mathcal{D}^1_1(ILP_b)$

$$\blacktriangleright \langle B, H, \{H'_1, H'_2\} \rangle \notin \mathcal{D}^1_m(ILP_b)$$

One-to-many Distinguishability

Definition 2

Let
$$B = \emptyset$$
, $H = \{1\{\texttt{heads}, \texttt{tails}\}1\}$, $H'_1 = \{\texttt{heads}.\}$, $H'_2 = \{\texttt{tails}.\}$

►
$$\langle B, H, H'_1 \rangle \in \mathcal{D}^1_1(ILP_b)$$
 and $\langle B, H, H'_2 \rangle \in \mathcal{D}^1_1(ILP_b)$

- $\blacktriangleright \langle B, H, \{H'_1, H'_2\} \rangle \notin \mathcal{D}^1_m(ILP_b)$
- $\blacktriangleright \langle B, H, \{H'_1, H'_2\} \rangle \in \mathcal{D}^1_m(ILP_{sm})$

One-to-many Distinguishability

Definition 2

For a framework \mathcal{F} , $\mathcal{D}_m^1(\mathcal{F})$ is the set of tuples $\langle B, H, \{H_1, \ldots, H_n\} \rangle$ st there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_i with respect to B.

$$\mathcal{D}_{m}^{1}(ILP_{b}) \subset \mathcal{D}_{m}^{1}(ILP_{sm}) \subset \mathcal{D}_{m}^{1}(ILP_{LAS}) \subset \mathcal{D}_{m}^{1}(ILP_{LOAS}) \subset \mathcal{D}_{m}^{1}(ILP_{LOAS})$$

 $\mathcal{D}^1_m(ILP_c) \subset \mathcal{D}^1_m(ILP_{LAS})$

Many-to-many Distinguishability

Definition 3

For a framework \mathcal{F} , $\mathcal{D}_m^m(\mathcal{F})$ is the set of tuples $\langle B, S_1, S_2 \rangle$, st there is a task $T_{\mathcal{F}}$ with background B, st $S_1 \subseteq ILP_{\mathcal{F}}(T_{\mathcal{F}})$ and $S_2 \cap ILP_{\mathcal{F}}(T_{\mathcal{F}}) = \emptyset$.

6/8

Many-to-many Distinguishability

Definition 3

For a framework \mathcal{F} , $\mathcal{D}_m^m(\mathcal{F})$ is the set of tuples $\langle B, S_1, S_2 \rangle$, st there is a task $T_{\mathcal{F}}$ with background B, st $S_1 \subseteq ILP_{\mathcal{F}}(T_{\mathcal{F}})$ and $S_2 \cap ILP_{\mathcal{F}}(T_{\mathcal{F}}) = \emptyset$.

 $\mathcal{D}_m^m(ILP_b) \subset \mathcal{D}_m^m(ILP_{sm}) \subset \mathcal{D}_m^m(ILP_{LAS}) \subset \mathcal{D}_m^m(ILP_{LOAS}) \subset \mathcal{D}_m^m(ILP_{LOAS}^{context})$

 $\mathcal{D}_m^m(ILP_c) \subset \mathcal{D}_m^m(ILP_{LAS})$

Complexity

Framework	Verification	Satisfiablity
ILP _b	NP-complete	NP-complete
ILP _{sm}	NP-complete	NP-complete
ILP _c	DP-complete	Σ_2^P -complete
ILP _{LAS}	DP-complete	Σ_2^P -complete
ILP _{LOAS}	DP-complete	Σ_2^P -complete
ILP ^{context} LOAS	DP-complete	Σ_2^P -complete

Complexity

Framework	Verification	Satisfiablity
ILP _b	NP-complete	NP-complete
ILP _{sm}	NP-complete	NP-complete
ILP _c	DP-complete	Σ_2^P -complete
ILP _{LAS}	DP-complete	Σ_2^P -complete
ILP _{LOAS}	DP-complete	Σ_2^P -complete
ILP ^{context} LOAS	DP-complete	Σ_2^P -complete
ILP ^{noise} LOAS	DP-complete	Σ_2^P -complete

Conclusion

- We have introduced three new measures of the generality of a learning framework.
- For each of the three measures:

 $\mathcal{D}(ILP_b) \subseteq \mathcal{D}(ILP_{sm}) \subset \mathcal{D}(ILP_{LAS}) \subset \mathcal{D}(ILP_{LOAS}) \subset \mathcal{D}(ILP_{LOAS})$

 $\mathcal{D}(ILP_c) \subset \mathcal{D}(ILP_{LAS})$

- There is no price to be paid (in terms of complexity) for the gain in generality of ILP^{context}_{LOAS} over ILP_c.
- ► ILP_b and ILP_{sm} are of lower complexity, but are less general than ILP_{LAS}.

Backup Slides

9/8

One-to-many Distinguishability

▶ In the paper, we proved that if for any two \mathcal{F} tasks T_1 , T_2 there is a task T_3 such that $ILP_{\mathcal{F}}(T_3) = ILP_{\mathcal{F}}(T_1) \cap ILP_{\mathcal{F}}(T_2)$ then:

$$\mathcal{D}_m^1(\mathcal{F}) = \left\{ \langle B, H, \{H_1, \dots, H_n\} \rangle \middle| \begin{array}{c} \langle B, H, H_1 \rangle \in \mathcal{D}_1^1(\mathcal{F}), \\ \dots, \\ \langle B, H, H_n \rangle \in \mathcal{D}_1^1(\mathcal{F}) \end{array} \right\}.$$

- ▶ In *ILP_{LAS}*, *T*₃ can be constructed as $\langle B, E_1^+ \cup E_2^+, E_1^- \cup E_2^- \rangle$.
- This property holds for every framework (in the paper) other than ILP_b.

$$\mathcal{D}_{m}^{1}(ILP_{b}) \subset \mathcal{D}_{m}^{1}(ILP_{sm}) \subset \mathcal{D}_{m}^{1}(ILP_{LAS}) \subset \mathcal{D}_{m}^{1}(ILP_{LOAS}) \subset \mathcal{D}_{m}^{1}(ILP_{LOAS}^{context})$$

$$\mathcal{D}_{m}^{1}(ILP_{c}) \subset \mathcal{D}_{m}^{1}(ILP_{LAS})$$

Brave Induction cannot learn constraints

- Let *H* be a hypothesis and *C* be a constraint.
- ▶ For any $T = \langle B, E^+, E^- \rangle$ st $H \cup C \in ILP_b(T)$, there is an $A \in AS(B \cup H \cup C)$ st $E^+ \subseteq A$ and $E^- \cap A = \emptyset$.

Any such A is also an answer set of $B \cup H$.

- ▶ Hence ILP_b cannot distinguish $H \cup C$ from H (wrt any background knowledge).
- ▶ In practice this means that *ILP_b* cannot learn constraints.

Other notion of generality

- ▶ (De Raedt 1997) defined generality in terms of reductions. \mathcal{F}_1 is said to be more general than \mathcal{F}_2 iff $\mathcal{F}_2 \rightarrow_r \mathcal{F}_1$ and $\mathcal{F}_1 \not\rightarrow_r \mathcal{F}_2$.
- These reductions allowed the background knowledge B to be modified in the reduction, whereas distinguishability does not.
- ▶ In the paper we define *strong reductions* which force the background knowledge to be the same and show that $\mathcal{F}_1 \rightarrow_{sr} \mathcal{F}_2$ if and only if $\mathcal{D}_m^m(\mathcal{F}_1) \subseteq \mathcal{D}_m^m(\mathcal{F}_2)$.
- Other than the restriction on the background knowledge, distinguishability also allows for fine grained comparisons of frameworks which are *incomparable* under reductions and strong reductions.

DE RAEDT, L. 1997.

Logical settings for concept-learning. Artificial Intelligence 95, 1, 187-201.

