The Complexity and Generality of Learning Answer Set Programs

(AIJ 2018)

Mark Law, Alessandra Russo and Krysia Broda

September 2, 2018
Several ILP frameworks have been proposed to learn ASP:

- In ILP_b (resp ILP_c) at least one (resp every) answer set of $B \cup H$ must cover the (atom) examples.
- In ILP_{LAS} examples are partial interpretations and a combination of ILP_b and ILP_c can be expressed.
Several ILP frameworks have been proposed to learn ASP:

- In ILP_b (resp ILP_c) at least one (resp every) answer set of $B \cup H$ must cover the (atom) examples.
- In ILP_{LAS} examples are partial interpretations and a combination of ILP_b and ILP_c can be expressed.

This paper asks two fundamental questions:

- What class of ASP programs can each framework learn?
- Is there any (complexity) price paid by the more general frameworks?
ILP under the Answer Set Semantics

- Several ILP frameworks have been proposed to learn ASP:
 - In ILP_b (resp ILP_c) at least one (resp every) answer set of $B \cup H$ must cover the (atom) examples.
 - In ILP_{LAS} examples are partial interpretations and a combination of ILP_b and ILP_c can be expressed.

- This paper asks two fundamental questions:
 - What class of ASP programs can each framework learn?
 - Is there any (complexity) price paid by the more general frameworks?

- In the paper we also consider ILP_{sm}, ILP_{LOAS} and $ILP_{context}$.
Definition 1

A learning framework \(\mathcal{F} \) can distinguish \(H_1 \) from \(H_2 \) wrt \(B \) iff there is at least one task \(T_\mathcal{F} = \langle B, E_\mathcal{F} \rangle \) such that \(H_1 \in \mathcal{F}(T_\mathcal{F}) \) and \(H_2 \notin \mathcal{F}(T_\mathcal{F}) \).
Definition 1

A learning framework \(\mathcal{F} \) can distinguish \(H_1 \) from \(H_2 \) wrt \(B \) iff there is at least one task \(T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle \) such that \(H_1 \in \mathcal{F}(T_{\mathcal{F}}) \) and \(H_2 \not\in \mathcal{F}(T_{\mathcal{F}}) \).

- \(D^1_{\mathcal{F}} \) is the set of tuples \(\langle B, H_1, H_2 \rangle \) such that \(\mathcal{F} \) can distinguish \(H_1 \) from \(H_2 \) wrt \(B \).
One-to-one Distinguishability

Definition 1
A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

- $D_1^1(\mathcal{F})$ is the set of tuples $\langle B, H_1, H_2 \rangle$ such that \mathcal{F} can distinguish H_1 from H_2 wrt B.

Let $B = \emptyset$, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

- $\langle B, H_1, H_2 \rangle$ is not in $D_1^1(ILP_b)$.
One-to-one Distinguishability

Definition 1
A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_{\mathcal{F}} = \langle B, E_{\mathcal{F}} \rangle$ such that $H_1 \in \mathcal{F}(T_{\mathcal{F}})$ and $H_2 \notin \mathcal{F}(T_{\mathcal{F}})$.

$\mathcal{D}_1^{1}(\mathcal{F})$ is the set of tuples $\langle B, H_1, H_2 \rangle$ such that \mathcal{F} can distinguish H_1 from H_2 wrt B.

Let $B = \emptyset$, $H_1 = \{p.\}$ and $H_2 = \{0\} p. 1.\}$.

$\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}_1^{1}(ILP_b)$.

$E^+ = \{p\}$ \hspace{2cm} $E^- = \emptyset$

$H_2 \in ILP_b(\langle B, \{p\}, \emptyset \rangle)$.

3/8
One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_\mathcal{F} = \langle B, E_\mathcal{F} \rangle$ such that $H_1 \in \mathcal{F}(T_\mathcal{F})$ and $H_2 \notin \mathcal{F}(T_\mathcal{F})$.

- $\mathcal{D}^1_1(\mathcal{F})$ is the set of tuples $\langle B, H_1, H_2 \rangle$ such that \mathcal{F} can distinguish H_1 from H_2 wrt B.

Let $B = \emptyset$, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

- $\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}^1_1(ILP_b)$.
- $\langle B, H_2, H_1 \rangle$ is in $\mathcal{D}^1_1(ILP_b)$.
One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_\mathcal{F} = \langle B, E_\mathcal{F} \rangle$ such that $H_1 \in \mathcal{F}(T_\mathcal{F})$ and $H_2 \notin \mathcal{F}(T_\mathcal{F})$.

$\mathcal{D}_{1}(\mathcal{F})$ is the set of tuples $\langle B, H_1, H_2 \rangle$ such that \mathcal{F} can distinguish H_1 from H_2 wrt B.

Let $B = \emptyset$, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

- $\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}_{1}(ILP_b)$.
- $\langle B, H_2, H_1 \rangle$ is in $\mathcal{D}_{1}(ILP_b)$.

$$E^+ = \emptyset \quad E^- = \{p\}$$

$H_2 \in ILP_b(\langle B, \emptyset, \{p\} \rangle)$ but $H_1 \notin ILP_b(\langle B, \emptyset, \{p\} \rangle)$.
One-to-one Distinguishability

Definition 1

A learning framework \(\mathcal{F} \) can *distinguish* \(H_1 \) from \(H_2 \) wrt \(B \) iff there is at least one task \(T_\mathcal{F} = \langle B, E_\mathcal{F} \rangle \) such that \(H_1 \in \mathcal{F}(T_\mathcal{F}) \) and \(H_2 \notin \mathcal{F}(T_\mathcal{F}) \).

- \(D^1_1(\mathcal{F}) \) is the set of tuples \(\langle B, H_1, H_2 \rangle \) such that \(\mathcal{F} \) can distinguish \(H_1 \) from \(H_2 \) wrt \(B \).

Let \(B = \emptyset \), \(H_1 = \{p.\} \) and \(H_2 = \{0\{p\}1.\} \).

- \(\langle B, H_1, H_2 \rangle \) is not in \(D^1_1(ILP_b) \).
- \(\langle B, H_2, H_1 \rangle \) is in \(D^1_1(ILP_b) \).
- \(\langle B, H_1, H_2 \rangle \) is in \(D^1_1(ILP_c) \).
One-to-one Distinguishability

Definition 1

A learning framework \mathcal{F} can distinguish H_1 from H_2 wrt B iff there is at least one task $T_\mathcal{F} = \langle B, E_\mathcal{F} \rangle$ such that $H_1 \in \mathcal{F}(T_\mathcal{F})$ and $H_2 \notin \mathcal{F}(T_\mathcal{F})$.

- $\mathcal{D}_1(\mathcal{F})$ is the set of tuples $\langle B, H_1, H_2 \rangle$ such that \mathcal{F} can distinguish H_1 from H_2 wrt B.

Let $B = \emptyset$, $H_1 = \{p.\}$ and $H_2 = \{0\{p\}1.\}$.

- $\langle B, H_1, H_2 \rangle$ is not in $\mathcal{D}_1(ILP_b)$.
- $\langle B, H_2, H_1 \rangle$ is in $\mathcal{D}_1(ILP_b)$.
- $\langle B, H_1, H_2 \rangle$ is in $\mathcal{D}_1(ILP_c)$.

$E^+ = \{p\}$ \hspace{2cm} $E^- = \emptyset$

$H_1 \in ILP_c(\langle B, \emptyset, \{p\} \rangle)$ but $H_2 \notin ILP_c(\langle B, \emptyset, \{p\} \rangle)$.

Mark Law, Alessandra Russo and Krysia Broda
The Complexity and Generality of Learning Answer Set Programs (AIJ 2018)
One-to-one Distinguishability Conditions

<table>
<thead>
<tr>
<th>Framework \mathcal{F}</th>
<th>Sufficient/necessary condition for $\langle B, H_1, H_2 \rangle$ to be in $\mathcal{D}_1^1(\mathcal{F})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP_{b}</td>
<td>$AS(B \cup H_1) \not\subseteq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{sm}</td>
<td>$AS(B \cup H_1) \not\subseteq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{c}</td>
<td>$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (\mathcal{E}_c(B \cup H_1) \not\subseteq \mathcal{E}_c(B \cup H_2)))$</td>
</tr>
<tr>
<td>ILP_{LAS}</td>
<td>$AS(B \cup H_1) \neq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{LOAS}</td>
<td>$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (\text{ord}(B \cup H_1) \neq \text{ord}(B \cup H_2))$</td>
</tr>
<tr>
<td>$ILP_{context}^{LOAS}$</td>
<td>$(B \cup H_1 \neq^s B \cup H_2) \lor$</td>
</tr>
<tr>
<td></td>
<td>$(\exists C \in \text{ASP}^{\text{ch}} \text{ st } \text{ord}(B \cup H_1 \cup C) \neq \text{ord}(B \cup H_2 \cup C))$</td>
</tr>
</tbody>
</table>
One-to-one Distinguishability Conditions

<table>
<thead>
<tr>
<th>Framework</th>
<th>Sufficient/necessary condition for $\langle B, H_1, H_2 \rangle$ to be in $D_1^1(F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP_b</td>
<td>$AS(B \cup H_1) \not\subseteq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{sm}</td>
<td>$AS(B \cup H_1) \not\subseteq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_c</td>
<td>$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (E_c(B \cup H_1) \not\subseteq E_c(B \cup H_2)))$</td>
</tr>
<tr>
<td>ILP_{LAS}</td>
<td>$AS(B \cup H_1) \neq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{LOAS}</td>
<td>$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (ord(B \cup H_1) \neq ord(B \cup H_2))$</td>
</tr>
<tr>
<td>$ILP^{\text{context}}_{LOAS}$</td>
<td>$(B \cup H_1 \not\equiv^s B \cup H_2) \lor (\exists C \in ASP^{\text{ch}} \text{ st } ord(B \cup H_1 \cup C) \neq ord(B \cup H_2 \cup C))$</td>
</tr>
</tbody>
</table>

- Neither ILP_b of ILP_{sm} can distinguish $H \cup C$ from H for any constraint C and any H – in practice, neither ILP_b nor ILP_{sm} can learn constraints.
One-to-one Distinguishability Conditions

<table>
<thead>
<tr>
<th>Framework \mathcal{F}</th>
<th>Sufficient/necessary condition for $\langle B, H_1, H_2 \rangle$ to be in $D_{11}(\mathcal{F})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP_b</td>
<td>$\text{AS}(B \cup H_1) \not\subseteq \text{AS}(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{sm}</td>
<td>$\text{AS}(B \cup H_1) \not\subseteq \text{AS}(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_c</td>
<td>$\text{AS}(B \cup H_1) \neq \emptyset \land (\text{AS}(B \cup H_2) = \emptyset \lor (\text{E}_c(B \cup H_1) \not\subseteq \text{E}_c(B \cup H_2)))$</td>
</tr>
<tr>
<td>ILP_{LAS}</td>
<td>$\text{AS}(B \cup H_1) \neq \text{AS}(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{LOAS}</td>
<td>$(\text{AS}(B \cup H_1) \neq \text{AS}(B \cup H_2)) \lor (\text{ord}(B \cup H_1) \neq \text{ord}(B \cup H_2))$</td>
</tr>
<tr>
<td>$ILP_{\text{context}}^{\text{LOAS}}$</td>
<td>$(B \cup H_1 \not\equiv^s B \cup H_2) \lor$ $\exists C \in \text{ASP}^{ch}$ st $\text{ord}(B \cup H_1 \cup C) \neq \text{ord}(B \cup H_2 \cup C))$</td>
</tr>
</tbody>
</table>

- ILP_{LAS} can distinguish any two hypotheses, so long as they have different answer sets (when combined with B).
One-to-one Distinguishability Conditions

<table>
<thead>
<tr>
<th>Framework \mathcal{F}</th>
<th>Sufficient/necessary condition for $\langle B, H_1, H_2 \rangle$ to be in $\mathcal{D}^{1}_{1}(\mathcal{F})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP_b</td>
<td>$AS(B \cup H_1) \not\subset AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{sm}</td>
<td>$AS(B \cup H_1) \not\subset AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_c</td>
<td>$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (\mathcal{E}_c(B \cup H_1) \not\subset \mathcal{E}_c(B \cup H_2)))$</td>
</tr>
<tr>
<td>ILP_{LAS}</td>
<td>$AS(B \cup H_1) \neq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{LOAS}</td>
<td>$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (\text{ord}(B \cup H_1) \neq \text{ord}(B \cup H_2))$</td>
</tr>
<tr>
<td>$ILP_{LOAS}^{\text{context}}$</td>
<td>$(B \cup H_1 \not\equiv^s B \cup H_2) \lor (\exists C \in \mathcal{ASP}^{ch} \text{ st } \text{ord}(B \cup H_1 \cup C) \neq \text{ord}(B \cup H_2 \cup C))$</td>
</tr>
</tbody>
</table>

- $ILP_{LOAS}^{\text{context}}$ can distinguish any two hypotheses, so long as they are not strongly equivalent (when combined with B).
One-to-one Distinguishability Conditions

<table>
<thead>
<tr>
<th>Framework \mathcal{F}</th>
<th>Sufficient/necessary condition for $\langle B, H_1, H_2 \rangle$ to be in $\mathcal{D}_1^1(\mathcal{F})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP_b</td>
<td>$AS(B \cup H_1) \not\subseteq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{sm}</td>
<td>$AS(B \cup H_1) \not\subseteq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_c</td>
<td>$AS(B \cup H_1) \neq \emptyset \land (AS(B \cup H_2) = \emptyset \lor (E_c(B \cup H_1) \not\subseteq E_c(B \cup H_2)))$</td>
</tr>
<tr>
<td>ILP_{LAS}</td>
<td>$AS(B \cup H_1) \neq AS(B \cup H_2)$</td>
</tr>
<tr>
<td>ILP_{LOAS}</td>
<td>$(AS(B \cup H_1) \neq AS(B \cup H_2)) \lor (ord(B \cup H_1) \neq ord(B \cup H_2))$</td>
</tr>
<tr>
<td>$ILP_{context}^{LOAS}$</td>
<td>$(B \cup H_1 \neq^s B \cup H_2) \lor (\exists C \in ASP^{ch} \text{ st } ord(B \cup H_1 \cup C) \neq ord(B \cup H_2 \cup C))$</td>
</tr>
</tbody>
</table>

$\mathcal{D}_1^1(ILP_b) = \mathcal{D}_1^1(ILP_{sm}) \subset \mathcal{D}_1^1(ILP_{LAS}) \subset \mathcal{D}_1^1(ILP_{LOAS}) \subset \mathcal{D}_1^1(ILP_{context}^{LOAS})$

$\mathcal{D}_1^1(ILP_c) \subset \mathcal{D}_1^1(ILP_{LAS})$
Definition 2

For a framework \mathcal{F}, $D_m^1(\mathcal{F})$ is the set of tuples $\langle B, H, \{H_1, \ldots, H_n\} \rangle$ such that there is a task $T_\mathcal{F}$ which distinguishes H from each H_i with respect to B.
One-to-many Distinguishability

Definition 2
For a framework \mathcal{F}, $D_m^1(\mathcal{F})$ is the set of tuples $\langle B, H, \{H_1, \ldots, H_n\}\rangle$ st there is a task $T_\mathcal{F}$ which distinguishes H from each H_i with respect to B.

Let $B = \emptyset$, $H = \{\text{heads, tails}1.\}$, $H'_1 = \{\text{heads.}\}$, $H'_2 = \{\text{tails.}\}$

- $\langle B, H, H'_1 \rangle \in D_1^1(\text{ILP}_b)$ and $\langle B, H, H'_2 \rangle \in D_1^1(\text{ILP}_b)$
One-to-many Distinguishability

Definition 2

For a framework \mathcal{F}, $\mathcal{D}_m^1(\mathcal{F})$ is the set of tuples $\langle B, H, \{H_1, \ldots, H_n\}\rangle$ st there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_i with respect to B.

Let $B = \emptyset$, $H = \{1\{\text{heads}, \text{tails}\}1.\}$, $H'_1 = \{\text{heads}\}$, $H'_2 = \{\text{tails}\}$.

- $\langle B, H, H'_1 \rangle \in \mathcal{D}_1^1(\text{ILP}_b)$ and $\langle B, H, H'_2 \rangle \in \mathcal{D}_1^1(\text{ILP}_b)$
- $\langle B, H, \{H'_1, H'_2\}\rangle \not\in \mathcal{D}_m^1(\text{ILP}_b)$
One-to-many Distinguishability

Definition 2

For a framework \mathcal{F}, $D^1_m(\mathcal{F})$ is the set of tuples $\langle B, H, \{H_1, \ldots, H_n\}\rangle$ s.t. there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_i with respect to B.

Let $B = \emptyset$, $H = \{1\{\text{heads, tails}\}1.\}$, $H'_1 = \{\text{heads.}\}$, $H'_2 = \{\text{tails.}\}$

- $\langle B, H, H'_1 \rangle \in D^1_1(\text{ILP}_b)$ and $\langle B, H, H'_2 \rangle \in D^1_1(\text{ILP}_b)$
- $\langle B, H, \{H'_1, H'_2\} \rangle \notin D^1_m(\text{ILP}_b)$
- $\langle B, H, \{H'_1, H'_2\} \rangle \in D^1_m(\text{ILP}_{sm})$
One-to-many Distinguishability

Definition 2

For a framework \mathcal{F}, $\mathcal{D}_m^1(\mathcal{F})$ is the set of tuples $\langle B, H, \{H_1, \ldots, H_n\} \rangle$ such that there is a task $T_{\mathcal{F}}$ which distinguishes H from each H_i with respect to B.

\[
\mathcal{D}_m^1(ILP_b) \subset \mathcal{D}_m^1(ILP_{sm}) \subset \mathcal{D}_m^1(ILP_{LAS}) \subset \mathcal{D}_m^1(ILP_{LOAS}) \subset \mathcal{D}_m^1(ILP_{context})
\]

\[
\mathcal{D}_m^1(ILP_c) \subset \mathcal{D}_m^1(ILP_{LAS})
\]
Many-to-many Distinguishability

Definition 3

For a framework \(\mathcal{F} \), \(D_m^m(\mathcal{F}) \) is the set of tuples \(\langle B, S_1, S_2 \rangle \), st there is a task \(T_{\mathcal{F}} \) with background \(B \), st \(S_1 \subseteq ILP_{\mathcal{F}}(T_{\mathcal{F}}) \) and \(S_2 \cap ILP_{\mathcal{F}}(T_{\mathcal{F}}) = \emptyset \).
Many-to-many Distinguishability

Definition 3

For a framework \mathcal{F}, $\mathcal{D}_m^m(\mathcal{F})$ is the set of tuples $\langle B, S_1, S_2 \rangle$, st there is a task $T_{\mathcal{F}}$ with background B, st $S_1 \subseteq ILP_{\mathcal{F}}(T_{\mathcal{F}})$ and $S_2 \cap ILP_{\mathcal{F}}(T_{\mathcal{F}}) = \emptyset$.

\[
\mathcal{D}_m^m(ILP_b) \subset \mathcal{D}_m^m(ILP_{sm}) \subset \mathcal{D}_m^m(ILP_{LAS}) \subset \mathcal{D}_m^m(ILP_{LOAS}) \subset \mathcal{D}_m^m(ILP_{LOAS}^{\text{context}})
\]

\[
\mathcal{D}_m^m(ILP_c) \subset \mathcal{D}_m^m(ILP_{LAS})
\]
Complexity

<table>
<thead>
<tr>
<th>Framework</th>
<th>Verification</th>
<th>Satisfiability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP_b</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>ILP_{sm}</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>ILP_c</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
<tr>
<td>ILP_{LAS}</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
<tr>
<td>ILP_{LOAS}</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
<tr>
<td>$ILP_{context}$</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
</tbody>
</table>
Complexity

<table>
<thead>
<tr>
<th>Framework</th>
<th>Verification</th>
<th>Satisfiability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP_b</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>ILP_{sm}</td>
<td>NP-complete</td>
<td>NP-complete</td>
</tr>
<tr>
<td>ILP_c</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
<tr>
<td>ILP_{LAS}</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
<tr>
<td>ILP_{LOAS}</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
<tr>
<td>$ILP_{\text{context \ LOAS}}$</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
<tr>
<td>$ILP_{\text{noise \ LOAS}}$</td>
<td>DP-complete</td>
<td>Σ_2^P-complete</td>
</tr>
</tbody>
</table>
Conclusion

- We have introduced three new measures of the generality of a learning framework.

- For each of the three measures:
 \[D(\text{ILP}_b) \subseteq D(\text{ILP}_{sm}) \subseteq D(\text{ILP}_{LAS}) \subseteq D(\text{ILP}_{LOAS}) \subseteq D(\text{ILP}_{context}) \]
 \[D(\text{ILP}_c) \subseteq D(\text{ILP}_{LAS}) \]

- There is no price to be paid (in terms of complexity) for the gain in generality of \(\text{ILP}_{LOAS}^{context} \) over \(\text{ILP}_c \).

- \(\text{ILP}_b \) and \(\text{ILP}_{sm} \) are of lower complexity, but are less general than \(\text{ILP}_{LAS} \).
Backup Slides
In the paper, we proved that if for any two \(\mathcal{F} \) tasks \(T_1, T_2 \) there is a task \(T_3 \) such that \(ILP_{\mathcal{F}}(T_3) = ILP_{\mathcal{F}}(T_1) \cap ILP_{\mathcal{F}}(T_2) \) then:

\[
D_{m}^{1}(\mathcal{F}) = \left\{ \langle B, H, \{H_1, \ldots, H_n\}\rangle \mid \langle B, H, H_1\rangle \in D_{1}^{1}(\mathcal{F}), \ldots, \langle B, H, H_n\rangle \in D_{1}^{1}(\mathcal{F}) \right\}.
\]

In \(ILP_{\text{LAS}} \), \(T_3 \) can be constructed as \(\langle B, E_1^+ \cup E_2^+, E_1^- \cup E_2^- \rangle \).

This property holds for every framework (in the paper) other than \(ILP_b \).

\[
D_{m}^{1}(ILP_b) \subset D_{m}^{1}(ILP_{\text{sm}}) \subset D_{m}^{1}(ILP_{\text{LAS}}) \subset D_{m}^{1}(ILP_{\text{LOAS}}) \subset D_{m}^{1}(ILP_{\text{context}}) \\
D_{m}^{1}(ILP_c) \subset D_{m}^{1}(ILP_{\text{LAS}})
\]
Brave Induction cannot learn constraints

- Let H be a hypothesis and C be a constraint.

- For any $T = \langle B, E^+, E^- \rangle$ st $H \cup C \in ILP_b(T)$, there is an $A \in AS(B \cup H \cup C)$ st $E^+ \subseteq A$ and $E^- \cap A = \emptyset$.

 Any such A is also an answer set of $B \cup H$.

- Hence ILP_b cannot distinguish $H \cup C$ from H (wrt any background knowledge).

- In practice this means that ILP_b cannot learn constraints.
Other notion of generality

- (De Raedt 1997) defined generality in terms of reductions. \(F_1 \) is said to be more general than \(F_2 \) iff \(F_2 \to_r F_1 \) and \(F_1 \not\to_r F_2 \).

- These reductions allowed the background knowledge \(B \) to be modified in the reduction, whereas distinguishability does not.

- In the paper we define strong reductions which force the background knowledge to be the same and show that \(F_1 \to_{sr} F_2 \) if and only if \(D^m_m(F_1) \subseteq D^m_m(F_2) \).

- Other than the restriction on the background knowledge, distinguishability also allows for fine grained comparisons of frameworks which are incomparable under reductions and strong reductions.