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The Goals

Main:

(1) To establish a good, simple baseline for comparison of
neuro-symbolic models using large amount of relational data
and background knowledge

(2) To compare the performance of the baseline against
state-of-the-art.

Additional:

(1) Use of symbolic domain-knowledge by the simple baseline

(2) The limitations of the baseline



This Talk

I What is a �Deep Relational Machine (DRM)�?

I How is it di�erent from a �Deep Neural Network�?

I Why is it useful to study DRMs?



Deep Relational Machine (DRM)

The term DRM is introduced in Lodhi1.

I ILP (Data, BK) +
Deep Network

I Input: First-order
boolean functions
(E.g. Function F1 is
TRUE if the instance
x is a molecule
containing
7-membered ring
connected to a
lactone ring)

1Lodhi, H.: Deep relational machines. In Proc: ICONIP 2013.



Feature classes

A comprehensive study was conducted in Saha et al.2. The Venn
diagram shows the relationships among various classes of features.

I Fd : unrestricted de�nite clauses, Fi : body
contains only one independent component,
Fs : body contains only one sink literal.

I Every feature in Fd ,Fi ,Fr ,Fe can be
constructed from simple features Fs .

I Every feature in Fd can be constructed
from independent features Fi .

I Our present work uses features from Fd .

2Saha, A., Srinivasan, A., & Ramakrishnan, G.: What Kinds of Relational
Features Are Useful for Statistical Learning?. In Proc: ILP 2012



Inputs to the DRM (Propositionalisation)

The following procedure is used in Vig et al.3

Repeat:

1. Randomly draw an example e

2. Construct the bottom clause
for e (most speci�c clause)

3. Draw a clause (from a feature
class) that subsumes the
bottom clause

4. Check subsumption
equivalence with
already-selected features

5. Construct the feature

Comments

Ln 1. with replacement

Ln 2. use a depth-limited mode
language

Ln 3. Max. literals in body: 3

Ln 4. to avoid redundancy of
features

Ln 5. add it to the feature set

3Vig, L., Srinivasan, A., Bain, M., & Verma, A. (2017, September). An
Investigation into the Role of Domain-Knowledge on the Use of Embeddings.
In Proc. ILP 2017.



Deep Network

I Dense Multi-layered Perceptron (MLP) with various depths

I Minimum 1 and maximum 4 hidden layers of neurons

I Number of hidden neurons ∈ {5, 10}
I Number of deep networks evaluated: (2+4+8+16=30)



Problems (Data)
So far, DRMs have been tested on very small amounts of data (7
datasets, few 1000s of instances).

In this work, DRM is evaluated on: (1) 73 anti-cancer datasets �
classi�cation, (2) 50 QSAR datasets � regression

AB : Just the bond description of a molecule (does not use domain
knowledge)
ABFR : bond description along with functional groups and rings
(uses domain knowledge)

Classi�cation: National Cancer Institute (NCI) (www.cancer.gov)
Regression: ChEMBL database (www.ebi.ac.uk/chembl)



Background Knowledge

We use the same background knowledge as DMax4 with minor
modi�cation for tractable computation.

4https://dtai.cs.kuleuven.be/software/dmax/



Results I (Comparable to State-of-the-art)

Figure: Classi�cation (all 73) (Comparing with LRNN5)

5Sourek, G., Aschenbrenner, V., Zelezny, F., & Kuzelka, O. (2015). Lifted
relational neural networks. arXiv preprint arXiv:1508.05128.



Results II (Comparable to State-of-the-art)

Figure: Regression (all 50) (Comparing with Meta-QSAR6)

6Olier, I. et al.: Meta-QSAR: a large-scale application of meta-learning to
drug design and discovery. Machine Learning, 2018



Results III (Gets better with domain knowledge)

Figure: DRM performance when high-level background knowledge is not
used



Results IV (Increasing features helps)

Figure: E�ect of increasing features (comparing against state-of-the-art)

Deep Net building time (approx): 50: 15s, 100: 20s, 250: 25s, 500:
35s, 1000: 45s, 2500: 60s, 5000: 90s



Results V (But, features need to be expressive)

Figure: Unrestricted features versus simple features



Regression can be improved

I DRMs are better in 50% and worse in 50%

I The features used in the Meta-QSAR study are pharmacophore
features (FCFP4 �ngerprint representation): contains more
detailed information of structural and chemical properties of
molecules

I Enriching our feature set by augmenting it with FCFP4
features



Results VI (Feature enrichment helps regression)

Figure: Extended DRM: E�ect of feature enrichment in DRM for bottom
30% of datasets



Summary of results

(1) The idea of propositionalisation have been around for a long
time starting with LINUS. It is a simple way to introduce
background knowledge into feature based learning.

(2) Results of deep neural networks and propositionalisation (which
we call `DRM') are surprisingly good even with randomly
selected features

(3) The datasets and results here provide a good baseline to
compare neuro-symbolic models on relational data.

(4) DRMs may be more scalable than more elaborate methods like
∂-ILP7.

I But, see limitations (next)

7Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from
noisy data. Journal of Arti�cial Intelligence Research, 61, 1-64.



Limitations

I Performance of DRM depends on the expressive power of
features used as input (This work: unrestricted class of de�nite
clauses)

I Intractable to provide all features with su�cient expressive
power

I Deep Network can not do relational join. Example: A neuron
taking two features:
F1 : ∀x(East(x)← ∃y(HasCar(x , y), Short(y))), and
F2 : ∀x(East(x)← ∃y(HasCar(x , y),Closed(y))).
can not produce
F : ∀x(East(x)← ∃y(HasCar(x , y),Short(y),Closed(y)))
but, will produce an approximation to
F ′ : ∀x(East(x)←
∃y , z(HasCar(x , y),HasCar(x , z),Short(y),Closed(z)))
i.e.
F ′′ : φ(w1F1+ w2F2+ w0)
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Thank you.


