

The game of Bridge: a challenge for ILP

S. Legras, C. Rouveirol, V. Ventos

Véronique Ventos LRI Univ Paris-Saclay vventos@nukk.ai

Interest of games for Al

Excellent field of experimentation

Problems are easier to understand and to model than in real life (limited number of simple rules, in-depth human analysis over time, ...)

Game successes have always been milestones for AI

Go = major challenge

Until 2006 : level of an average amateur player

Crazy Stone, Mogo : Go Al with strategies combining several ML methods

AlphaGo (Deep Mind, google)

March 2016 : alphaGo won 4 to 1 against Lee Sedol

May 2017 : alphaGo Master has defeated Ke Jie, the world's number one Go player

October 2017 :

Zero vs Lee : 100-0

Zero vs Master: 89-11

Next Step ?

In January 2017, the **Poker AI Libratus** developed by Carnegie **Mellon University won** a heads-up no-limit **Texas hold'em poker** event against four of the best professional players

Poker vs...

Poker vs bridge

Bridge is the next challenge for AI

Bridge robots : far from best human players (quite similar to go programs before 2006)

Our conviction : « solving » Bridge is a big step between AI such AlphaGo and a General Artificial Intelligence

Bridge needs symbolic approaches

The game of Bridge is an application needing more than black box approaches

Need of explanations: at some point players must explain their actions

To "crack" a game, a program needs to play optimally

but ...

To "solve" it the program's play must also be explainable in human understandable terms

Part 1: Bridge
Part 2: Opening bid problem
Part 3: ML settings and experiments
Part 4: Brief conclusion

Part 1: Bridge

Usual vision of bridge

ILP Ferrara sept 2018

Bridge in 2018

World championships

Wroclaw 2016

Lyon 2017

Bridge is tough but ...

ILP Ferrara sept 2018

Bridge in short

- Trick-taking game, played with 52 standard cards opposing two pairs of players
- Cards are dealt randomly to the four players
- Each of them only sees his hand (13 cards)

Incomplete information game : players do not have common knowledge of the game being played

Two steps: the bidding phase then the card play

Bidding phase

Coded language used by players to pass information to their partner about their hand

Goal : reach an optimal contract. The contract specifies the minimum number of tricks among the thirteen to be won in the second phase

Card play

ILP Ferrara sept 2018

Part 2: Opening bid problem

Set of bidding cards

35 symbols of bid : from 1 to 7NT Cards for other calls : Pass, X, XX Stop, Alert

There exist many bidding systems assigning meanings to bids : e.g. Acol, Standard American, Precision Club, Polish Club

Standard American Yellow Card

SAYC (Standard American Yellow Card) is a bidding system which is prevalent in online bridge games

My hand : ♠AK83 ♥QJ2 ♦1076 ♣AJ8

My bid :

1. Counting the high card points (HCP) of my hand
with Ace : 4, King : 3, Queen : 2, Jack : 1
▲AK83 ♥QJ 2 ◆1076 ♣AJ8

1. Counting the high card points (HCP) of my hand
with Ace : 4, King : 3, Queen : 2, Jack : 1
▲AK83 ♥QJ 2 ◆ 1076 ♣AJ8 → 15 HCP

 Counting the high card points (HCP) of my hand with Ace : 4, King : 3, Queen : 2, Jack : 1

 ▲AK83 ♥QJ 2 ◆1076 ♣AJ8 → 15 HCP

 Determining the hand pattern: distribution of the thirteen cards in a hand over the four suits

▲AK83 **♥**QJ2 **♦**1076 **♣**AJ8

 Counting the high card points (HCP) of my hand with Ace : 4, King : 3, Queen : 2, Jack : 1

 ▲AK83 ♥QJ 2 ◆1076 ♣AJ8 ■ 15 HCP
 Determining the hand pattern: distribution of the thirteen cards in a hand over the four suits

▲AK83 **♥**QJ2 **♦**1076 **♣**AJ8 **■ ♦**-3-3-3

1. Counting the high card points (HCP) of my hand with Ace : 4, King : 3, Queen : 2, Jack : 1 ♠AK83 ♥QJ2 ♦ 1076 ♣AJ8 **15 HCP** 2. Determining the hand pattern: distribution of the thirteen cards in a hand over the four suits ♠AK83 ♥QJ2 ♦1076 ♣AJ8 4-3-3-3 3. Classifying my hand : balanced (no short suit) or unbalanced?

1. Counting the high card points (HCP) of my hand with Ace : 4, King : 3, Queen : 2, Jack : 1 ♠AK83 ♥QJ2 ♦ 1076 ♣AJ8 15 HCP 2. Determining the hand pattern: distribution of the thirteen cards in a hand over the four suits ♠AK83 ♥QJ2 ♦1076 ♣AJ8 4-3-3-3 3. Classifying my hand : balanced (no short suit) or

unbalanced? balanced

Using SAYC opening rules

Opening problem in Bridge

'Should I bid or pass with a limit hand ?'

The first bid is called the opening

In SAYC, 1-of-a-suit opening requires at least 12 HCP but ...

Opening problem in Bridge

'Should I bid or pass with a limit hand ?'

- The first bid is called the opening
- In SAYC, 1-of-a-suit opening requires at least 12 HCP
- but ... experts allow themselves to deviate slightly from the rule by opening some **11** HCP hands
- This decision is very important (big impact on the final scoring)

Part 3: ML settings and experiments

Machine Learning setting

- The opening bid problem is a binary classification problem where Task T consists in predicting if a given expert opens or passes with a 'limit' hand according to a bridge situation.
- Input : set of *n* labeled examples (*x*_{*i*},*class*_{*i*})
- Output : f(x) assigning each example x to its class + (open) or (pass)

The goal is to learn rules linked to experts' decisions Random generation of 6 sets of unlabeled examples Labeling by 4 Bridge experts (among the best 100 players of their country) using a system requiring 12 HCP for opening
Important remarks

- Experts have the same level but different styles
 - Decisions vary a lot from an expert to another
- Learning of 'personal rules', different learning tasks
- Consistency : the same expert can make different decisions facing the exact same situation

Tagging Interface

Summary and statistics

6 samples sets, 4 experts, aggressiveness

Labeled set	S_1	S_2	S_3	S_4	$S_{5,1}$	$S_{5,2}$	S_6
Unlabeled set	R_1	R_2	R_3	R_4	R_5	R_5	R_5
Expert	E_1	E_2	E_2	E_3	E_4	E_4	E_4
Size	1000	1000	970	790	1222	1222	1079
Pos./Neg.	768/232	681/319	540/430	603/187	681/541	582/640	560/519
Pos rate (%)	76.80	68.10	55.67	76.33	55.72	47.63	51.90

 Table 1. Samples sets

Experts' consistency

Labeled set	S_1	S_2	S_3	S_4	$S_{5,1}$	$S_{5,2}$	S_6
Unlabeled set	R_1	R_2	R_3	R_4	R_5	R_5	R_5
Expert	E_1	E_2	E_2	E_3	E_4	E_4	E_4
Size	1000	1000	970	790	1222	1222	1079
Pos./Neg.	768/232	681/319	540/430	603/187	681/541	582/640	560/519
Pos rate (%)	76.80	68.10	55.67	76.33	55.72	47.63	51.90

Table 1. Samples sets

3 ML systems

The Support Vector Machine (SVM) learner and the ILP systems (Aleph and Tilde) used in the experiments are both state of the art ML systems

Aleph : learning from entailment (set of prolog rules)

Tilde : learning from interpretations (relational decision tree)

Background knowledge : set of definite clauses

Expected ILP added value

Flexibility : allows experimenting with various abstractions of examples description through the use of background knowledge

Explainability : learned models are readable by experts who can then help us update current BK

Designing the BK stems from a joint work between experts and us in order to achieve both an acceptable bridge-wise representation and an acceptable learning performance

First representation (propositional)

 BK_0 : The following predicates form the common background for all BKs (*E* represents the example primary key).

- open(E, Class) with Class = pos or neg
- $has_hand(E, H)$ where H is a list of card constants representing the hand's example
- $has_card(E, C)$ is true if C is a card occurring in E's hand
- position(E, P) with P a digit between 1 and 4 representing the position of the expert
- vuln(E, V1, V2) with V1 and V2 = g (not vulnerable) or r (vulnerable) representing the vulnerability of the player and of its opponents.

Example 1 using BK0

King of heart description

- has-card(h1, hk)
- card(hk)
- has_suit(hk,heart)
- has_rank(hk,k)

- card (X) ∧ has_suit(X,heart) → major(X)
 - $card(X) \land has_rank(X,k) \rightarrow honor(X)$
- Saturation : major(hk), honor(hk)

Relational representation

- BK1 extract (card is structured and abstracted)
- has_suit(Card,Suit), has_rank(Card,Rank)
 honor(Card) / small card(Card)
- minor(Card) / major(Card)

```
nb(E,Suit,Num)
```

lteq(Num, Num), gteq(Num, Num)

Relational representation

BK1 extract (abstraction of Hand description)

distribution(E, [Num, Num, Num, Num])

balanced(E) / semi_balanced(E) / unbalanced(E)

plusvalue(E)/moinsvalue(E) (e.g. at least two honors in a suit with at-least 5 cards)

BK2: all BK1 predicates + list_honor(E, Suit, ListH)

Partial relational description of example 1


```
nb(e1,Spade,4)
nb(e1,Heart,3)
distribution(e1,[4,4,3,2])
```

balanced(e1)

plusvalue(e1)

- We have made experiments on labeled sets with several BK of increasing expressivity using SVM, Aleph and Tilde
- Accuracy comparaison of SVM, Aleph and Tilde
- For ILP systems :
- Complexity of the learned models
- Relevance according to experts' feedback

Accuracy of learned models

10-fold cross validation

Accuracy of learned models

- The performance with propositional BK (BK0) is low as expected
- Models learned with BK1 and BK2 have significant better results
- No significant difference between BK1 and BK2
- Performance of Aleph and Tilde are close
- Similar conclusions on other datasets (results available on our website)

Complexity of learned models

Nb of rules in terms of the size of the training set

Complexity of learned models

- The number of rules regulary increases for Aleph whereas its performance is stable (overfitting?)
- The size of Tilde's models stabilizes for BK1 when it nearly reaches its best performance
- BK2 seems less adapted for Tilde (bigger complexity with similar performance)
- Both ILP systems reach a good performance while seing few examples and with small models

Relevance: Expert feedback

Some of the rules produced are of the 'common bridge knowledge' type whereas the others are more subjective and personal

- R1: open(A) :- plusvalue(A), position(A,3)
- R2 : open(A) :- nb(A,spade,B), gteq(B,4), position(A,4)

Famous bridge rule known as 'the rule of 15'

- Tilde : the complexity of the model learned is significantly different from an expert to another
- Relationship between this complexity and the expert's way of thinking

(e.g. E1 has an analytical mind, his DT is very concise, E4 is more intuitive, he is a slow player, his DT is two times larger and generated rules are too specific)

What's in an expert's Mind?

E1 First order logical decision tree

E1 feedback

- The first node has been validated by E1 as the first criteria of his decision
- Several rules have been described as 'excellent'
- The global vision of the DT appeared to him congruent with his approach to the problem
- Before the experiments E1 was not able to explain clearly his decision-making process
- Bridge experts have black-box approach :)

Part 4: Brief conclusion

Different skills

Being a good bridge player requires :

- depth of analysis
- reasoning with incomplete information
- ability to establish a diagnosis based on different sources
- evaluation of opponent's level and psychology
- communication with partner etc

vBridge Project

2015-2017: AlphaBridge academic Project Univ Paris Saclay (http://vvopenai.monsite-orange.fr/)

2018-...: VBridge project designed by NukkAI to solve the game of bridge by defining a hybrid architecture including recent numeric and symbolic Machine Learning modules

NukkAI : a private AI Lab

Cofounded with JB Fantun in may 2018 Web site : www.nukk.ai

Building next generation AI

ILP Ferrara sept 2018

VBridge architecture

Hybrid architecture combining different AI paradigms: Symbolic Reinforcement Learning, Description Logics, Planning in MDP, POMDP, Deep Learning, (Probabilistic) Inductive Logic Programming

Symbolic modules

Main goal : use formalisms understandable for humans

- Bridge Background Knowledge (BK)
- **Decision making rules**
- Adaptation, automatic update of set of rules
- **Transfer Learning**

Approaching the real situation

Throughout the game, the hidden information is reduced

The main goal of each player consists in 'rebuilding' the hidden hands in order to make decisions

Bridge is probabilistic

Rebuilding is based on probabilistic reasoning

- A= 'Opponent holds king of club'
- B= 'My partner holds king of club'

C='Opponent holds 3 cards in club and my partner holds 2 cards in club'

p(A)=p(B)=1/2 P(A/C)=3/5

Each new information modifies the probability of the distribution of the hidden cards and influences the player's strategy

It was difficult at first to convince people that Bridge was more than juste a game

It is still difficult to convince people that hybrid approach is welcome

It was difficult at first to convince people that bridge was more than juste a game

It is still difficult to convince people that hybrid approach is welcome

But ... Bridge is a killer application for that

NukkAI collaborations

Bridge is a great challenge for AI and much work related to the definition of a Bridge AI remains to be done

Collaborations are welcome

ILP Ferrara sept 2018

http://vvopenai.monsite-orange.fr/

Home Resea

Research Areas

AlphaBridge motivations

AlphaBridge project

.

Véronique Ventos

PhD in Artificial Intelligence (1997)

Brief bio:

I have been an associate professor at <u>Paris Saclay</u> <u>University</u>, France since 1998.

1998-2015: member of <u>LaHDAK</u> (Large-scale Heterogeneous DAta and Knowledge).

Since 2015, I carry my research inside the team <u>A&O</u> (Machine Learning and Optimization), at <u>Laboratory of Computer Science (LRI)</u>.

AlphaBridge Project

I started playing bridge in 2004 and am now 59th French woman player out of 48644 players.

In 2015, I set up the **AlphaBridge** project combining my two passions. AlphaBridge is dedicated to solve the game of bridge by defining a hybrid architecture including recent numeric and symbolic Machine Learning modules.

ILP Ferrara sept 2018

Al winter is not coming (back) :)

