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Games
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Interest of games for AI

Excellent field of experimentation 

Problems are easier to understand and to model 
than in real life  (limited number of simple rules,  
in-depth human analysis over time, ... )

Game successes have always been  milestones for 
AI
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Go =  major challenge

 Until 2006 :  level of an 
average amateur player 

Crazy Stone, Mogo : Go 
AI with strategies 
combining several ML 
methods 
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March 2016 :  alphaGo 
won  4 to 1 against  Lee 
Sedol

AlphaGo (Deep Mind, google)

May  2017 : alphaGo 
Master  has defeated Ke 
Jie, the world’s number 
one Go player

October 2017 :  

Zero vs  Lee : 100-0

Zero vs  Master : 89-11 
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 Next Step ?

Libratus In January 2017, the 
Poker AI  Libratus 
developed by Carnegie 
Mellon University won 
a heads-up no-limit 
Texas hold'em poker 
event against four of 
the best professional 
players 
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 Poker  vs ...

Libratus, Deep Stack
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Poker  vs  bridge

Libratus, Deep Stack
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Bridge is the next challenge for AI

Bridge robots : far from best human players (quite 
similar to  go programs  before 2006)

Our conviction :  « solving » Bridge is a big  step 
between  AI such AlphaGo and a General Artificial  
Intelligence 
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               Bridge needs symbolic approaches

The game of Bridge is  an application needing more 
than black box approaches

Need of explanations: at some point players must 
explain their actions
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To ''crack'' a game, a program needs to play 
optimally

but …

To ''solve'' it the program's play must also be 
explainable in human understandable terms
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Part 1: Bridge 

Part 2: Opening bid problem

Part 3: ML settings and experiments

Part 4: Brief conclusion
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Part 1:  Bridge 
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Usual vision of bridge 
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 Bridge in 2018
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World championships

Wroclaw 2016 Lyon 2017
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 Bridge is tough but ... 
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           Bridge in short

Trick-taking game, played with 52 standard cards 
opposing two pairs of players

Cards are dealt randomly to the four players

Each of them  only sees his hand (13 cards) 

Incomplete information game :  players do not 
have common knowledge of the game being 
played 
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Two steps: the bidding phase then the card 
play
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        Bidding phase

Coded language used 
by players to pass 
information to their 
partner about their 
hand  
Goal : reach an optimal contract. The contract 
specifies the minimum number of tricks among the 
thirteen  to be won in the second phase
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Card play

Goal :  to fulfill (or to defeat for  the opposite side) 
the contract reached during the bidding phase 
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Part 2:  Opening bid problem
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Set of bidding cards

There exist many bidding systems assigning meanings to 
bids : e.g. Acol , Standard American,  Precision Club , 
Polish Club

 

35 symbols of bid : from 1 to 7NT
Cards for other calls :

Pass, X, XX
Stop, Alert
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 Standard American Yellow Card

SAYC (Standard American Yellow Card) is a bidding 
system which is prevalent in online bridge games

My hand : AK83  QJ2  1076   AJ8

 

My bid :

 

Pass ? 2NT ? 1NT ?
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1. Counting the high card points (HCP)  of my hand

with Ace : 4, King : 3, Queen : 2, Jack : 1

 AK83  QJ 2 1076   AJ8  
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1. Counting the high card points (HCP)  of my hand

with Ace : 4, King : 3, Queen : 2, Jack : 1

 AK83  QJ 2 1076   AJ8                  15 HCP
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1. Counting the high card points (HCP)  of my hand

with Ace : 4, King : 3, Queen : 2, Jack : 1

 AK83  QJ 2 1076   AJ8                  15 HCP

2. Determining the hand pattern: distribution of 
the thirteen cards in a hand over the four suits  

AK83  QJ 2 1076   AJ8   
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1. Counting the high card points (HCP)  of my hand

with Ace : 4, King : 3, Queen : 2, Jack : 1

 AK83  QJ 2 1076   AJ8                  15 HCP

2. Determining the hand pattern: distribution of 
the thirteen cards in a hand over the four suits  

AK83  QJ 2 1076   AJ8                  4-3-3-3
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1. Counting the high card points (HCP)  of my hand

with Ace : 4, King : 3, Queen : 2, Jack : 1

 AK83  QJ 2 1076   AJ8                  15 HCP

2. Determining the hand pattern: distribution of 
the thirteen cards in a hand over the four suits  

AK83  QJ 2 1076   AJ8                  4-3-3-3

3.  Classifying my hand : balanced (no short suit) or 
unbalanced ?  
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1. Counting the high card points (HCP)  of my hand

with Ace : 4, King : 3, Queen : 2, Jack : 1

 AK83  QJ 2 1076   AJ8                  15 HCP

2. Determining the hand pattern: distribution of 
the thirteen cards in a hand over the four suits  

AK83  QJ 2 1076   AJ8                  4-3-3-3

3.  Classifying my hand : balanced (no short suit) or 
unbalanced ?                    balanced
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     Using SAYC opening rules

Finally :

Choosing a rule 

                     Bid  1NT  with 15-17 HCP, balanced

AK83  QJ2  1076   AJ8 

 

 1NT       :)
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Opening problem in Bridge

'Should I bid or pass with a limit hand ?' 

The first bid is called the opening

In SAYC, 1-of-a-suit opening  requires at least 12 HCP

but … 
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Opening problem in Bridge

'Should I bid or pass with a limit hand ?' 

The first bid is called the opening

In SAYC, 1-of-a-suit opening  requires at least 12 HCP

but … experts allow themselves to deviate slightly 
from the rule by opening some 11 HCP hands

This decision is very important (big impact on the 
final scoring)
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Part 3: ML settings and experiments
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Machine Learning  setting

The opening bid problem is a binary classification 
problem where  Task T consists in predicting if a given 
expert opens or passes with a 'limit'  hand according 
to a bridge situation.

Input : set of n labeled examples (xi ,classi) 

Output : f(x) assigning each example x to its class + 
(open) or - (pass)
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                    DataSets

The goal is to learn  rules linked to experts’ decisions

Random generation of 6 sets of unlabeled examples

Labeling  by 4 Bridge experts (among the best 100 
players of their country) using a system requiring 12 
HCP for opening 
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        Important remarks

Experts have the same level but different styles 

                Decisions vary a lot from an expert to another

Learning of  ‘personal rules’,  different learning tasks 

Consistency : the same expert can make different 
decisions  facing the exact same situation
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    Tagging Interface
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              Summary  and statistics
6 samples  sets, 4 experts, aggressiveness
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              Experts’ consistency 
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             3 ML systems 

The Support Vector Machine (SVM) learner and the 
ILP systems (Aleph  and Tilde) used in the 
experiments are both state of the art ML systems

Aleph : learning from entailment (set of prolog 
rules)

Tilde : learning from interpretations (relational 
decision tree)

Background knowledge : set of definite clauses
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   Expected ILP added value 

Flexibility :  allows experimenting with various 
abstractions  of examples description through the 
use of background knowledge

Explainability : learned  models are readable by 
experts who can then help us  update current BK 
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        Designing  BK

Designing the  BK stems from a joint work between 
experts and us in order to achieve both an 
acceptable bridge-wise representation  and an 
acceptable learning performance
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     First representation (propositional)  
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                       Example 1  using BK0
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King of heart description

has-card(h1, hk)

card(hk)

has_suit(hk,heart)

has_rank(hk,k)
card (X)  has_suit(X,heart)  major(X)

card(X)  has_rank(X,k)  honor(X)

Saturation : major(hk), honor(hk)
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Relational representation

BK1 extract (card is structured and 
abstracted)  

has_suit(Card,Suit),  has_rank(Card,Rank)

honor(Card)  /  small card(Card)

minor(Card) / major(Card)

nb(E,Suit,Num)

lteq(Num, Num), gteq(Num, Num)
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 Relational representation

BK1 extract (abstraction of Hand description)

distribution(E, [Num,Num,Num,Num])

balanced(E) / semi_balanced(E) / unbalanced(E)

plusvalue(E)/moinsvalue(E) (e.g. at least two 
honors in a  suit  with at-least 5 cards)

BK2: all BK1 predicates  + list_honor(E, Suit, ListH)
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    Partial relational description  of  example 1

nb(e1,Spade,4)

nb(e1,Heart,3)

distribution(e1,[4,4,3,2])

balanced(e1)

plusvalue(e1)
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                  Experiments

We have made experiments on labeled sets with 
several BK of increasing expressivity using SVM, 
Aleph and Tilde

Accuracy comparaison of SVM, Aleph and Tilde 

For ILP systems :

Complexity of the learned  models

Relevance according to experts’ feedback
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                 Accuracy of learned models

10-fold cross validation
10 SwannLegras, CélineRouveirol, andVéroniqueVentos

Fig.3. Accuracy (meanandstandarddeviation) for all classifiersonS1 andS5.2

propositional learnersareneverthelessnotabletoreachagoodperformance. Some
essential (relational) information ismissing fromtherepresentation;

– Using relational BK (BK 1 andBK 2), ILP systems both significantly outperform
theSVM systemaswell as ILP systemsoperatingonrawpropositional examples’
representations (section 3.2) on datasets shown, as well as others shown in the
appendix. This demonstrates the relational essence of the problem. Their perfor-
mancesarearound82%, whichcanbeconsideredasquiteacceptable, considering
E4’sconsistency rate(88%), asshowninsection3.1. Again, weevaluateherethe
relevanceof therepresentation of examplesandbackgroundknowledgemorethan
theperformanceof propositional vs. relational learningsystems.

– AlephandTildehavecloseperformanceswhatever dataset andBK isused. It is in
particular not possible to distinguish fromanaccuracy point of viewmodels built
usingBK 1 orBK 2. Tildemayslightly outperformAleph, althoughnotonall sets.

5.2 Performancein function of thetraining set size

Toevaluatethesensitivityof thelearningsystemstothetrainingsetsize, weproceedas
follows. For agiven fold i , 1 i 10, let usdenoteby Test i thetest set andTr aini
the training set of the fold. For each fold i and proportion p, we sampled astratified
sample set Ti ,p of size

|T r ai n i |⇤p
100 from Tr ain i . Each classifier learned for Ti ,p was

evaluated on Test i . Curves of figure4 show themean accuracy over 10 folds of the
classifier learned with training set Ti ,p as a function of p for background knowledge
BK 1 andBK 2.
As expected, theperformanceof all classifiers increases with thetraining set size,

althoughweobservethat ILP systemsareableto reachagoodperformancewith rela-
tively few examples (only 10%of thetraining set). Hopefully, wedo not observeany
loss inperformancefor thelargest trainingsets, whichallowsdiscardingoverfitting.
Wehaveagaincheckedwhether oneILP systemsignificantly outperformstheother

(paired t-test with 95% confidence). Significant differences are reported on thecurve
with a 4 . There are very few such differences in the performances of the two ILP
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                     Accuracy of learned models

The performance with propositional BK (BK0) is 
low as expected

Models learned with BK1 and BK2 have significant 
better results

No significant difference between BK1 and BK2

Performance of Aleph  and Tilde are close

Similar conclusions on other datasets (results 
available on our website)
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                Complexity of learned models

Nb of rules in terms of the size of the training set12 SwannLegras, CélineRouveirol, andVéroniqueVentos

Fig.5.Model complexity(numberof nodesandrules) forS1 andS5.2 datasetsandgivendifferent
backgroundknowledges (BK 1 andBK 2)

6 Expert validation

First of all, expert validations havebeenusedto incrementally updatetheBK. Inorder
toachievethistask, wemadesomeexperiments (notdetailed inthispaper) oninterme-
diateBKsbetweenBK 0 andBK 1 andwehavepresented theoutputsof themodels to
thedifferent experts. Their feedback (they validated or not the rules obtained) on the
results helpus to updateat eachstep thecurrent BK. For instance, seeing that thelan-
guageused in ruleswas too poor ledexperts to adviseus to useother features suchas
thesumof thecardnumbers in~ and � . Expertsalsoprovideduswithcardcombina-
tionsthatmakeahandmorevaluable(for instanceKing-Queen ina5+suit) allowingto
defineandincrementally refinethepredicateplusvalue. At theendof thisprocess, we
obtainedBK 1whichisthefirstBK couplinggoodperformancesandpositivefeedback
fromexperts regarding thelearned rules. Theexperiments presented below arerelated
toBK 1 andBK 2.
All expertsnoted that thisexperiencehadmodified their strategy in thispart of the

game. Thedifferencebetween thepercentages of openedhandsbyE4 onthesameset
(47.63%thesecondtimevs55.72%thefirst time) confirmsthispoint.
Thefollowingrulewasunanimously validated. It reflects thefact that expertsopen

withat least 6cards inanysuit.

r 1: ( Pos cover = 162 Neg cover = 1)
open( A) : - nb( A, B, C) , gt eq( C, 6) .

About the12rulesproducedbyAleph, expertsgavethefollowingopinion: 3excellent
rules (r1andr2, r3below).

r 2 : ( Pos cover = 68 Neg cover = 3)
open( A) : - pl usval ue( A) , posi t i on( A, 3) .

r 3 : ( Pos cover = 42 Neg cover = 4)
open( A) : - nb( A, spade, B) , gt eq( B, 4) , posi t i on( A, 4) .
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                     Complexity of learned models

The number of rules regulary increases for Aleph  
whereas its performance is stable (overfitting?)

The size of Tilde’s models stabilizes for BK1 when it 
nearly reaches its best performance 

BK2 seems less adapted for Tilde (bigger 
complexity with similar performance)

Both ILP systems reach a good performance while 
seing few examples and with small models
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                       Relevance: Expert feedback

Some of the rules produced are of the 'common 
bridge knowledge' type whereas the others are 
more subjective and personal

R1 : open(A) :- plusvalue(A), position(A,3)

R2 : open(A) :- nb(A,spade,B), gteq(B,4), 
position(A,4)

Famous bridge rule known as ‘the rule of 15’
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                Intuitive vs analytical  mind 

Tilde : the complexity of the model learned is 
significantly different from an expert to another 

Relationship between this complexity and the 
expert’s way of thinking

 (e.g. E1 has an analytical mind, his DT is very 
concise, E4 is more intuitive, he is a slow player, his 
DT is two times larger and generated rules are too 
specific)
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What's in an expert's Mind ?

E1 First order logical decision tree 
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E1 feedback

The first node has been validated by E1 as the first 
criteria of his decision

Several rules have been described as ‘excellent’

The global vision of the DT appeared to him 
congruent with his approach to the problem

Before the experiments E1 was not able to explain 
clearly his decision-making process

Bridge experts have black-box approach :) 
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Part 4:  Brief conclusion
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                            Different skills

Being a good bridge player requires  : 
● depth of analysis  
● reasoning with incomplete information
● ability to establish a diagnosis based on different 

sources
●  evaluation of opponent’s level and psychology
●  communication with partner etc
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                 Bridge Project

2015-2017: AlphaBridge academic Project  Univ Paris Saclay

(http://vvopenai.monsite-orange.fr/) 

 2018-… :   Bridge  project designed by NukkAI to solve the 
game of bridge by defining a hybrid architecture including 
recent numeric and symbolic Machine Learning modules

http://vvopenai.monsite-orange.fr/
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     NukkAI : a private AI Lab

Cofounded with

JB Fantun in may 2018

Web site :

www.nukk.ai

http://www.nukk.ai/
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                          Bridge architecture

Hybrid architecture combining  different AI 
paradigms: Symbolic Reinforcement Learning, 
Description Logics, Planning in MDP, POMDP, Deep 
Learning , (Probabilistic) Inductive Logic 
Programming
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Symbolic modules

Main goal : use  formalisms understandable for 
humans

Bridge Background Knowledge (BK)

Decision making rules

Adaptation, automatic update of set of rules

Transfer Learning



 AlphaBridge   june 8th  2018  

              Approaching the real situation

Throughout the game, the hidden information is 
reduced

The main goal of each player consists in 'rebuilding' 
the hidden hands in order to make decisions 
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Bridge is probabilistic

Rebuilding  is based on probabilistic reasoning

 A= ‘Opponent holds king of club’

B= ‘My partner  holds king of club’

C=’Opponent holds 3 cards in club and my partner  
holds 2 cards in club’

p(A)= p(B)=1/2       P(A/C)=3/5

Each new information modifies the probability of the 
distribution of the hidden cards and influences the 
player’s strategy
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It was difficult at first to convince people that 
Bridge was more than juste a game

It is still difficult to convince people  that hybrid 
approach is welcome

But  ...
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It was difficult at first to convince people that 
bridge was more than juste a game

It is still difficult to convince people  that hybrid 
approach is welcome

But  … Bridge is a killer application for that
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NukkAI collaborations

Bridge is a great challenge for AI and much work 
related to the definition of a Bridge AI remains to 
be done

Collaborations are welcome
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       http://vvopenai.monsite-orange.fr/
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AI winter is not coming (back) :)
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