LEARNING AND INFERENCE WITH CONSTRAINTS

ILP 2018

Outline

- Environment and constraints
- Bridging logic and real-valued constraints
- Representational issues
- Learning, Reasoning and Inference with constraints (lyrics s/w environment)

ENVIRONMENTS AND CONSTRAINTS

ILP 2018

Supervised Learning

$$
\mathcal{L}=\{((0,0), 0),((0,1), 1),((1,0), 1),((1,1), 0)\}=\emptyset
$$

Enforcing Consistencies

$$
\begin{aligned}
& f_{\omega h}: \mathcal{W} \rightarrow \mathscr{H}: h \rightarrow \omega(h), \\
& f_{a h}: \mathcal{W} \rightarrow \mathcal{A}: h \rightarrow a(h), \\
& f_{\omega a}: \mathcal{A} \rightarrow \mathcal{W}: a \rightarrow \omega(a),
\end{aligned}
$$

This functional equation is imposing the circulation of coherence. Since the functions are linear, this constraint can be converted to $w_{\omega h} h+b_{\omega h}=w_{\omega a} w_{a h} h+\left(w_{a h} b_{a h}+\right.$ $\left.b_{\omega a}\right)$. The equivalence $\forall h \in \mathbb{R}^{+}$yields

$$
\begin{aligned}
& w_{\omega a} w_{a h}-w_{\omega h}=0, \\
& w_{a h} b_{a h}+b_{\omega a}-b_{\omega h}=0 .
\end{aligned}
$$

Diagnosis and Prognosis in Medicine

Pima Indian Diabetes Dataset

$(M A S S \geq 30) \wedge(P L A S M A \geq 126) \Rightarrow$ positive $(M A S S \leq 25) \wedge(P L A S M A \leq 100) \Rightarrow$ negative
body mass index blood glucose

Wisconsin Breast Cancer Prognosis
$(S I Z E \geq 4) \wedge(N O D E S \geq 5) \Rightarrow$ recurrent
$(S I Z E \leq 1.9) \wedge($ NODES $=0) \Rightarrow$ non recurrent
diameter of the tumor number of metastasized lymph nodes

Reconstruction of overwritten chars
MNIST

I was told that the foreground char is less or equal to the background char

Recognize the foreground and background numbers

Reconstruction of overwritten chars MNIST

ILP 2018

Patterns, labels, and individuals

Giuseppe 178, 70, 45
label
$X \quad$ pattern
x

What about learning and inference with individuals?

Inference in formal logic

 only labels are involved!```
Domain(label="People")
Individual(label="Marco", "People")
Individual(label="Giuseppe", "People")
Individual(label="Michelangelo", "People")
Individual(label="Francesco", "People")
Individual(label="Franco", "People")
Individual(label="Andrea", "People")
```

```
Predicate(label="fatherOf", ("People", "People"))
Predicate(label="grandFatherOf", ("People", "People"))
Predicate(label="eq", ("People", "People"), function=eq)
```

```
Constraint("fatherOf(Marco, Giuseppe)")
Constraint("fatherOf(Giuseppe, Michelangelo)")
Constraint("fatherOf(Giuseppe, Francesco)")
Constraint("fatherOf(Franco, Andrea)")
```

```
Constraint("forall x: not fatherOf(x,x)")
Constraint("forall x: not grandFatherOf(x,x)")
```


## Inference in formal logic

```
Constraint("forall x: forall y: fatherOf(x,y) -> not fatherOf(y,x)")
Constraint("forall x: forall y: grandFatherOf(x,y)
-> not grandFatherOf(y,x)")
Constraint("forall x: forall y: fatherOf(x,y) -> not grandFatherOf(x,y)")
Constraint("forall x: forall y: grandFatherOf(x,y) -> not fatherOf(x,y)")
```

Constraint("forall $x$ : forall $y$ : forall $z: ~ f a t h e r 0 f(x, z)$ and fatherOf(z,y) ->
grandFather0f(x,y)")
Constraint("forall x: forall y: forall z: (father0f(x,y) and not eq(x,z)) ->
not father0f( $z, y$ )")

## Inference in formal logic

```
grandFatherOf("Marco", "Michelangelo")
grandFatherOf("Marco", "Francesco")
Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and
 fatherOf(y,z) -> fatherOf(x,y)")
```


## Full inference on individuals ( $X, x$ )

from formal logic
from neural nets
consistency constraints

$$
\left(\text { age }_{x}, \text { weight }_{x}, \text { height }_{x}, \text { age }_{y}, \text { weight }_{y}, \text { height }_{y}\right)
$$

Complexity issues: the inference in the environment avoids massive exploration of the Boolean hypercube

## BRIDGING LOGIC AND REAL-VALUED CONSTRAINTS


learning
relations and logic
"There are finer fish in the sea that have ever been caught," Irish proverb

## Two Schools of Thought


(Formal) Logic
Optimization, statistics


Any break through the wall?

## Logic by Real Numbers

$$
\begin{aligned}
& \forall x \quad a(x) \wedge b(x) \Rightarrow c(x) \\
& \text { p-norm } \\
& \neg(a(x) \wedge b(x)) \vee c(x)) \\
& \neg \neg(\neg(a(x) \wedge b(x)) \wedge c(x)) \\
& \neg(a(x) \wedge b(x) \wedge \neg c(x)) \\
& 1-f_{a}(x) \cdot f_{b}(x) \cdot\left(1-f_{c}(x)\right)=1 \\
& f_{a}(x) f_{b}(x)\left(1-f_{c}(x)\right)=0
\end{aligned}
$$

general form $\quad \forall x \quad \Phi(f(x))=0 \longrightarrow \Phi(x, f(x))=0$

## Logic by Real Numbers (con't)

$$
\begin{gathered}
\forall x \quad a(x) \wedge b(x) \Rightarrow c(x) \\
\neg(a(x) \wedge b(x) \wedge \neg c(x)) \\
\quad \begin{array}{l}
\text { Gödel } T \text {-norm } \\
1-\min \left\{f_{a}(x), f_{b}(x), 1-f_{c}(x)\right\}=1 \\
\\
\min \left\{f_{a}(x), f_{b}(x), 1-f_{c}(x)\right\}=0
\end{array}
\end{gathered}
$$

## Tricky Issues

$$
\begin{aligned}
& 1 \Rightarrow 2 \quad f_{1}\left(x_{1}\right)\left(1-f_{2}\left(x_{2}\right)\right)=0 \\
& 2 \Rightarrow 1 \quad f_{2}\left(x_{2}\right)\left(1-f_{1}\left(x_{1}\right)\right)=0 \\
& 2 \Leftrightarrow 1 \quad f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)-2 f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)=0 \\
& f_{1}^{2}\left(x_{1}\right)+f_{2}^{2}\left(x_{2}\right)-2 f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \\
& =\left(f_{1}\left(x_{1}\right)-f_{2}\left(x_{2}\right)\right)^{2}=0 \\
& \text { ? } \\
& f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)
\end{aligned}
$$

Petr Hájek on Mathematical Fuzzy Logic, Springer 2016

## Supervised Learning

The discover of loss by t-norms ...
$f\left(x_{\kappa}\right) \Leftrightarrow y_{\kappa}, \kappa=1, \ldots, \ell$
Łukasiewicz.

$$
\begin{gathered}
\mathrm{f}\left(x_{\kappa}\right) \Rightarrow \mathrm{y}_{\kappa}: \quad \min \left\{1-f\left(x_{\kappa}\right)+y_{\kappa}, 1\right\} \\
\mathrm{y}_{\kappa} \Rightarrow \mathrm{f}\left(x_{\kappa}\right): \\
\begin{array}{c}
\min \left\{1-y_{\kappa}+f\left(x_{\kappa}\right), 1\right\}
\end{array} \\
\begin{array}{c}
\left.\mathrm{f}\left(x_{\kappa}\right) \Rightarrow \mathrm{y}\left(x_{\kappa}\right)\right) \wedge\left(\mathrm{y}_{\kappa} \Rightarrow \mathrm{f}\left(x_{\kappa}\right)\right) \\
\left.\left.\max \left\{\min \left\{1-f_{\kappa}\left(x_{\kappa}\right)+y_{\kappa}, 1\right)\right\}+\min \left\{1-y_{\kappa}+f\left(x_{\kappa}\right), 1\right), 1\right\}\right\} \\
1-\left|y_{\kappa}-f\left(x_{\kappa}\right)\right|
\end{array}
\end{gathered}
$$

$\Phi(x, f(x))=0$

## Unsupervised Learning

## two groups

$$
\forall x(\mathrm{~A}(x) \oplus \mathrm{B}(x)) \wedge \mathrm{D}(x) \quad \text { exclusive properties }
$$

all data are in a certain domain

$$
\forall x(\mathrm{~A}(x) \vee \mathrm{B}(x)) \wedge \mathrm{D}(x) \quad \text { inclusive properties }
$$

## REPRESENTATIONAL ISSUES

"the simplest solution" compatible with the constraints


We use the Lagrangian optimization framework

## A New Communication Protocol

 data + constraints$\forall x \quad \Phi(x, f(x))=0 \quad$ from constraints to
$\sum_{\kappa \in U} \phi^{2}\left(x_{\kappa}, f\left(x_{\kappa}\right)\right)$ loss functions

## A New Communication Protocol

## data + constraints



## The New Role of Learning Data



## The Marriage of Parsimony Principle and Constraints

Constraints turn out to be loss functions keep these loss functions as small as possible $$
\begin{array}{c}f_{\text {hair }}(x)\left(1-f_{\text {mammal }}\right. \\ f_{\text {mammal }}(x) f_{\text {hoofs }}(x)\left(1-f_{\text {ungulate }}\right.\end{array}
$$

$f_{\text {ungulate }}(x) f_{\text {white }}(x) f_{\text {blackstripes }}(x)\left(1-f_{\text {zebra }}\right.$
penalty functions

\[

\]

$$
\begin{aligned}
& \text { Parsimony Principle } \\
& \qquad f \| \\
& f f_{\text {hair }} \\
& f_{\text {hoofs }} \\
& f_{\text {mammal }} \\
& f_{\text {ungulate }} \\
& f_{\text {white }} \\
& f_{\text {blackstripes }} \\
& f_{\text {zebra }}
\end{aligned}
$$

## How to represent the tasks?




Dual Space


Kernel Machines

## Semi-norm in Sobolev Spaces

$$
\begin{aligned}
& P=\sum_{|\alpha|<m} \underbrace{}_{\infty} a_{\alpha} D_{x}^{\alpha}=\sum_{|\alpha|<m} a_{\alpha}\left(\frac{\partial}{\partial x_{1}}+\ldots+\frac{\partial}{\partial x_{d}}\right)^{\alpha} \\
& P=\sum_{h=0}^{m} a_{h} \sum_{|\alpha|=h} \frac{h!}{\alpha!}\left(\frac{\partial}{\partial x}\right)^{\alpha} \quad P^{\star}=\sum_{h=0}^{m}(-1)^{h} a_{h} \sum_{|\alpha|=h} \frac{h!}{\alpha!}\left(\frac{\partial}{\partial x}\right)^{\alpha}
\end{aligned}
$$

Given $P$ and $\gamma_{i}>0, \ldots, i=1, \ldots, n$

$$
\left.E(f)=\|f\|_{P, \gamma}=\sum_{j=1}^{n} \gamma_{j}<P f_{j}, P f_{j}>=\sum_{j=1}^{n} \gamma_{j}<f_{j}, P^{\star} P f_{j}>=\sum_{j=1}^{n} \gamma_{j}<f_{j}, L f_{j}\right\rangle
$$

## Parsimony Principle

$\mathcal{F}_{\phi}$ admissible w.r.t the collection of constraints $\mathcal{C}_{\phi}$

$\stackrel{\text { ct }}{\text { D }}$ partially (soft)
check of a "new" constraint
$\forall x \quad \phi\left(x, f^{\star}(x), D f^{\star}(x)\right)=0 ?$
ILP 2018

## Inference

check of a new constraint $\mathcal{C} \models \phi$

$$
\forall x \quad \phi\left(x, f^{\star}(x)\right)=0
$$

$$
\begin{aligned}
\left\|\phi\left(\cdot, f^{\star}(\cdot)\right)\right\|^{2} & =\left(\int_{\mathcal{X}} \phi^{2}\left(x, f^{\star}(x) d x\right)\right. \\
& \propto \sum_{x_{\kappa} \in \mathcal{D}} \phi^{2}\left(x_{\kappa}, f^{\star}\left(x_{\kappa}\right)\right)
\end{aligned}
$$

Basic assumption: $\mathcal{D}$ is of "nearly null" measure in $\mathcal{X}$

Facing the intractability coming from formal logic formal

## Representer Theorem single constraint

Gnecco et al (20|5)

$$
\begin{gathered}
\tilde{\psi}(x, f(x))=0 \\
L f^{\star}+\frac{p}{\mu} \nabla_{f} \tilde{\psi}=0 \\
f^{\star}=g * \omega_{\tilde{\psi}} \\
\omega_{\tilde{\psi}}(x)=-\frac{1}{\mu} p(x) \nabla_{f} \tilde{\psi}\left(x, f^{\star}(x)\right) \\
\hat{f}^{\star}(\xi)=\hat{g}(\xi) \cdot \hat{\omega}_{\tilde{\psi}}(\xi)
\end{gathered}
$$

ILP 2018

## Representation of the solution

$$
\begin{array}{lll}
\text { 亏. } & \forall x \in \mathcal{X}_{i} \subset X: \phi_{i}(x, f(x))=0, i \in N_{m} & \frac{D\left(\phi_{1}, \ldots, \phi_{m}\right)}{D\left(f_{1}, \ldots, f_{m}\right)} \neq 0 \\
& \text { Lagrangian approach } \\
L g=\delta \quad \text { Green function } & \text { Euler-Lagrange equations } \\
\omega_{i}(\cdot)=-\lambda_{i}(\cdot) \nabla_{f} \phi_{i}\left(\cdot, f^{\star}(\cdot)\right) & \\
L f(f)=\|f\|_{P, \gamma}^{2}+\sum_{i=1}^{m} \int_{\mathcal{X}} \lambda_{i}(x) \cdot \phi_{i}(x, f(x)) d x & \text { reaction of the constraint }
\end{array}
$$

support constraints

$$
f^{\star}(\cdot)=\sum_{i=1}^{m} g(\cdot) \otimes \omega_{i}\left(f^{\star}(\cdot)\right)
$$

Fredholm eq. (Il kind)
"merging of two ideas ..."

## Lagrange Multipliers and Probability Density

hard constraints

$$
\begin{aligned}
& \forall x \in \mathcal{X}_{i} \subset X: \phi_{i}(x, f(x))=0, i \in N_{m} \\
& \mathcal{L}(f)=\|f\|_{P, \gamma}^{2}+\sum_{i=1}^{m} \int_{\mathcal{X}} \lambda_{i}(x) \check{\phi}_{i}(x, f(x)) d x \\
& \text { soft constraints } \\
& \mathcal{L}(f)=\|f\|_{P, \gamma}^{2}+C \sum_{i=1}^{m} \int_{\mathcal{X}} p_{i}(x) \check{\phi}_{i}(x, f(x)) d x
\end{aligned}
$$

## Parsimony and architectural constraints

minimize $\quad \frac{1}{2} \sum_{i \in O} \sum_{j \in H_{o}} w_{i j}^{2}+\sum_{\kappa=1}^{\ell} \sum_{j \in H} \lambda_{\kappa j}\left|x_{\kappa j}\right|$

$$
\begin{array}{ll}
\text { subject to } & x_{\kappa i}-\sigma\left(\sum_{j \in \mathrm{pa}(i)} w_{i j} x_{\kappa j}\right)=0, \quad i \in H \cup O, \quad \kappa=1, \ldots, \ell, \\
& 1-x_{\kappa i} y_{\kappa i} \leq 0 \quad i \in O, \quad \kappa=1, \ldots, \ell
\end{array}
$$

$$
\begin{aligned}
L(w, x, \alpha, \beta) & =\frac{1}{2} \sum_{i \in O} \sum_{j \in H_{o}} w_{i j}^{2}+\sum_{\kappa=1}^{\ell} \sum_{m}\left(\lambda_{\kappa m}\left|x_{\kappa m}\right|[m \in H]\right. \\
& +\alpha_{\kappa m}\left(x_{\kappa m}-\sigma\left(\sum_{r \in \mathrm{pa}(m)} w_{m r} x_{\kappa r}\right)\right)[m \in H \cup O] \\
& \left.+\sum_{i \in O} \beta_{\kappa i}\left(1-x_{\kappa i} y_{\kappa i}\right)_{+}\right),
\end{aligned}
$$

## Gradient descent/ascent

A more biologically plausibile solution than Backpropagation
saddle points of the Lagrangian

$$
\begin{aligned}
w_{i j} & \leftarrow w_{i j}-\eta_{w} \partial_{w_{i j}} L \\
x_{\kappa i} & \leftarrow x_{\kappa i}-\eta_{x} \partial_{x_{\kappa i}} L \\
\lambda_{\kappa i} & \leftarrow \lambda_{\kappa i}+\eta_{\lambda} \partial_{\lambda_{\kappa i}} L \text { focus of attention (gradient ascent) }
\end{aligned}
$$

saddle points of the Lagrangian

$$
g_{\kappa i}=x_{\kappa i}-\sigma\left(\sum_{j \in p a(i)} w_{i j} x_{\kappa j}\right)=0
$$

Lagrangian multipliers, straw and support neurons!
Network growing and constraint selection ...

## LYRICS



ILP 2018

## Semi-supervised Learning

```
Definition of the domain of the data points.
Domain(label="Points", data=X)
Approximating the predicate A via a NN.
Predicate("A", ("Points"), function=NN_A)
Fit the supervisions
PointwiseConstraint(A, y_s, X_s)
```


## given predicate

```
Given predicate stating whether two patterns are "close"
Predicate("Close", ("Points","Points"), function=f_close)
The constraint implementing manifold regularization.
Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")
```


## Semi-supervised Learning (con't)


(a)

(c)

(b) effect of close

(d)

ILP 2018

## Bridging Perception and Logic

$$
\begin{aligned}
& A=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: \quad 0 \leq x_{1}<2, \quad 0 \leq x_{2} \leq 1\right\} \\
& B=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: \quad 1 \leq x_{1}<3, \quad 0 \leq x_{2} \leq 1\right\} \\
& C=\left\{\left(x_{1}, x_{2}\right) \in R^{2}: \quad 1 \leq x_{1}<2, \quad 0 \leq x_{2} \leq 2\right\} \\
& D=C \cup\left\{\left(x_{1}, x_{2}\right) \in R^{2}: 0 \leq x_{1} \leq 1,1 \leq x_{2} \leq 2\right\}
\end{aligned}
$$

## "Knowledge Base"

$a_{1}(x) \wedge a_{2}(x) \Rightarrow a_{3}(x)$
$a_{3}(x) \Rightarrow a_{4}(x)$
$a_{1}(x) \vee a_{2}(x) \vee a_{3}(x)$


ILP 2018

## Checking (logic) constraints




## Checking (logic) constraints




ILP 2018

$$
a_{1}(x) \rightsquigarrow f_{1}(x)
$$



ILP 2018

$$
a_{2}(x) \leadsto f_{2}(x)
$$

points only

points and "logic rules"


ILP 2018

$$
a_{3}(x) \rightsquigarrow f_{3}(x)
$$

points only
points and "logic rules"


ILP 2018

$$
a_{4}(x) \rightsquigarrow f_{4}(x)
$$

points only
points and "logic rules"


ILP 2018

## Checking Constraints



Search reduced to manifolds instead of the Boolean hypercube!

## Checking Constraints in the Environment

$$
\begin{aligned}
& a_{1}(x) \wedge a_{2}(x) \Rightarrow a_{3}(x) \\
& \quad a_{3}(x) \Rightarrow a_{4}(x) \\
& a_{1}(x) \vee a_{2}(x) \vee a_{3}(x) \\
& \\
& x_{2} \uparrow \\
& \\
& \\
& a_{1} \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\begin{array}{lllll}
\text { Formally false } & & \text { but true in this environment! } \\
a_{1}(x) \wedge a_{3}(x) \Rightarrow a_{2}(x) & a_{1}=1, \quad a_{2}=0 & a_{3}=1 \\
a_{3}(x) \wedge a_{2}(x) \Rightarrow a_{1}(x) & a_{1}=0, \quad a_{2}=1 & a_{3}=1
\end{array}
$$

## Patterns, labels, and individuals



Giuseppe I78, 70, 45
label
X
pattern
$x$

What about learning and inference with individuals?

## Inference in formal logic

 only labels are involved!```
Domain(label="People")
Individual(label="Marco", "People")
Individual(label="Giuseppe", "People")
Individual(label="Michelangelo", "People")
Individual(label="Francesco", "People")
Individual(label="Franco", "People")
Individual(label="Andrea", "People")
```

```
Predicate(label="fatherOf", ("People", "People"))
Predicate(label="grandFatherOf", ("People", "People"))
Predicate(label="eq", ("People", "People"), function=eq)
```

```
Constraint("fatherOf(Marco, Giuseppe)")
Constraint("fatherOf(Giuseppe, Michelangelo)")
Constraint("fatherOf(Giuseppe, Francesco)")
Constraint("fatherOf(Franco, Andrea)")
```

```
Constraint("forall x: not fatherOf(x,x)")
Constraint("forall x: not grandFatherOf(x,x)")
```


Inference in formal logic

```
Constraint("forall x: forall y: fatherOf(x,y) -> not fatherOf(y,x)")
Constraint("forall x: forall y: grandFatherOf(x,y)
-> not grandFatherOf(y,x)")
Constraint("forall x: forall y: fatherOf(x,y) -> not grandFatherOf(x,y)")
Constraint("forall x: forall y: grandFatherOf(x,y) -> not fatherOf(x,y)")
```

Constraint("forall x : forall y : forall $z: ~ f a t h e r 0 f(x, z)$ and fatherOf(z,y) ->
grandFather0f(x,y)")
Constraint("forall x: forall y: forall z: (father0f(x,y) and not eq(x,z)) ->
not father0f(z, y)")

Inference in formal logic

```
grandFatherOf("Marco", "Michelangelo")
grandFatherOf("Marco", "Francesco")
Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and
    fatherOf(y,z) -> fatherOf(x,y)")
```


How does it work?

grounded pair	father	grandfather
(Marco, Giuseppe)	$w^{f}($ Mar, Giu)	$w^{g f}($ Mar, Giu $)$
(Marco, Francesco)	$w^{f}($ Mar, Fra $)$	$w^{g f}($ Mar, Fra $)$
\ldots		
$w^{f}\left(\right.$ Mar, Giu) $=1 \quad w^{f}($ Giu, Mic $)=1$	$w^{f}($ Giu, Fra $)=1 \quad w^{f}($ Fra, And $)=1$	

How does it work?

Łukasiewicz logic

$$
\begin{aligned}
& T(x, y)=\max \{0, x+y-1\} \\
& \Rightarrow \quad \min \{1,1-x+y\}
\end{aligned}
$$

$$
w^{f}(\text { Mar, Giu })=1 \quad w^{f}(\text { Giu, Mic })=1 \quad w^{f}(\text { Giu, Fra })=1 \quad w^{f}(\text { Fra, And })=1
$$

Constraint("forall x : forall y : forall $z: ~ f a t h e r O f(x, z)$ and fatherOf(z,y) -> grandFather0f(x,y)")
$\sum_{X, Y, Z} \min \left\{1-\max \left\{w^{f}(X, Z)+w^{f}(Z, Y)-1,0\right\}+w^{g f}(X, Y), 1\right\}$

Full inference on individuals (X, x)

$$
\begin{aligned}
& w^{f}(X, Y), w^{g f}(X, Y) \quad \text { from formal logic } \\
& \omega^{f}(x, y), \omega^{g f}(x, y) \xrightarrow{\text { from neustency constraints nets }} \\
& \left(\text { age }_{x}, \text { weight }_{x}, \text { height }_{x}, \text { age }_{y}, \text { weight }_{y}, \text { height }_{y}\right)
\end{aligned}
$$

Complexity issues: the inference in the environment avoids massive exploration of the Boolean hypercube

Poly Check

$$
\begin{aligned}
& \phi_{1}(f(x))=f_{2}(x) f_{4}(x)-f_{3}(x)+1=0 \\
& \phi_{2}(f(x))=f_{1}(x) f_{3}(x) f_{2}(x)+6=0 \\
& \phi_{3}(f(x))=f_{1}^{2}(x)-f_{4}(x)=0
\end{aligned}
$$

$$
\forall x \text { (formal check) }
$$

$$
f_{2}^{2}(x)+f_{1}(x) f_{2}(x) f_{4}(x)+f_{1}(x)+6=0 \quad ?
$$

$$
\phi_{1}: f_{3}=1+f_{2} f_{4}
$$

$$
f_{1} f_{3}=f_{1}+f_{1} f_{2} f_{4}
$$

$$
\phi_{2}: f_{2}^{2}+f_{1} f_{2} f_{4}+f_{1}+6=0
$$

Learning and inference in the environment

Learning and inference in the world of rectangles

ILP 2018

The "world of rectangles"

$$
x \sim\left(\left(p_{1}, p_{2}\right),\left(q_{1}, q_{2}\right)\right)
$$

```
\(\forall x, y\) in \(\mathrm{S}: \operatorname{left}(x, y) \Rightarrow \mathrm{S}_{L}(x, y)\) supervision
    \(\forall x, y\) in \(\mathrm{S}: \operatorname{below}(x, y) \Rightarrow \mathrm{S}_{B}(x, y)\)
    \(\forall x, y\) in \(\mathrm{S}: \operatorname{inside}(x, y) \Rightarrow \mathrm{S}_{I}(x, y)\)
        \(\forall x, y \operatorname{left}(x, y) \Leftrightarrow \operatorname{right}(y, x)\)
        \(\forall x, y \operatorname{below}(x, y) \Leftrightarrow \operatorname{above}(y, x)\)
        \(\forall x, y\) inside \((x, y) \Leftrightarrow \operatorname{contains}(y, x)\)
    \(\forall x, y \operatorname{left}(x, y) \Leftrightarrow \neg \operatorname{left}(y, x)\)
        \(\forall x, y \operatorname{below}(x, y) \Leftrightarrow \neg \operatorname{below}(y, x)\)
\(\forall x, y\) inside \((x, y) \Leftrightarrow \neg \operatorname{inside}(y, x)\)
    \(\forall x, y \operatorname{left}(x, y) \Leftrightarrow \neg \operatorname{inside}(x, y)\)
    \(\forall x, y \operatorname{below}(x, y) \Leftrightarrow \neg\) inside \((x, y)\)
```

consistency of the opposite
asymmetry consistency
topologic consistency

Inference in the "world of rectangles"

```
\(\forall x, y, z: \operatorname{inside}(x, y) \wedge \operatorname{right}(y, z) \Rightarrow \operatorname{right}(x, z)\)
\(\forall x, y \operatorname{left}(\mathrm{x}, \mathrm{y}) \Rightarrow \operatorname{above}(x, y)\)
\(\forall x \operatorname{left}(\mathrm{x}, \mathrm{x})\)
```

50 rectangles, 15 supervisions, 4-20-6 neural net

0.99
0.55
0.02

Generating the next char

```
\(\forall x\) IsZero \((x) \Rightarrow \operatorname{zero}(x)\)
\(\forall x\) IsOne \((x) \Rightarrow\) one \((x)\)
\(\forall x \operatorname{IsTwo}(x) \Rightarrow \operatorname{two}(x)\)
```

$\forall x \operatorname{IsZero}(x) \Rightarrow$ one $($ next $(x)) \wedge$ two(previous $(x))$
$\forall x$ IsOne $(x) \Rightarrow$ two $($ next $(x)) \wedge$ zero(previous $(x))$
$\forall x \operatorname{IsTwo}(x) \Rightarrow \operatorname{zero}(\operatorname{next}(x)) \wedge$ one $($ previous $(x))$
$\forall x \operatorname{next}(\operatorname{previous}(x))=x$
$\forall x$ previous(next $(x))=x$

Generating the next char (con't)

```
Domain("Images", data=X)
Predicate("zero",("Images"),function=Slice(NN, 0))
Predicate("one",("Images"),function=Slice(NN, 1))
Predicate("two",("Images"),function=Slice(NN, 2))
PointwiseConstraint(NN, y, X)
```

Predicate("eq", ("Images", "Images"), function=eq)
Function("next", ("Images"), function=NN_next)
Function("previous", ("Images"), function=NN_prev)
Constraint("forall x: zero(x) -> one(next(x))")
Constraint ("forall x: one(x) -> two(next(x))")
Constraint("forall x: two(x) -> zero(next(x))")
Constraint("forall x: zero(x) -> two(previous(x))")
Constraint("forall $x:$ one(x) $->$ zero(previous(x))")
Constraint("forall x: two(x) -> one(previous(x))")
Constraint("forall x: eq(previous(next(x)), x)")
Constraint("forall x: eq(next(previous(x)), x)")

Generating the next char ... (con't)

Notice that this is NOT based on GAN!

Reconstruction of overwritten chars
MNIST

I was told that the foreground char is less or equal to the background char

Recognize the foreground and background numbers

Conclusions

- A framework for computational laws of nature
- Probability distributions and Lagrange multipliers, biological plausibility and focus of attention
- Bridging symbols and sub-symbols (logic representations \& learning)
- Inference in the environment, full inference (searching in manifolds instead of the Boolean hypercube)
- Time and developmental issues (Piaget foundation of Developmental Psychology)

OPEN ISSUES

- Learning loss functions by generators
- Learning of constraints
- Interactive environments
- Stage-based processing

LYRICS
 Learning Yourself Reasoning and Inference with COnstraints

a development environment on top of tensorflow
https://github.com/GiuseppeMarra/lyrics

Acknowledgments

Stefano Melacci, Marco Maggini, Claudio Saccà, Francesco Giannini, Giuseppe Marra - UNISI

Giorgio Gnecco - IMT - Lucca
Marcello Sanguineti - Genova
Michelangelo Diligenti - UNISI and Google - Zurich
Luciano Serafini - FBK, Trento
Artur Gracez - City University, London
Michael Spranger - Sony
Luis Lamb, Tran Son - Institute of Informatics - UFRGS
Andrea Passerini - Univ. of Trento

Tutorial and international schools

tutorials:

IJCNN 2018, IJCAI 2018
International Schools:
ACDL 2018 (Siena)
DeepLearn 2018 (Genova)

Publications

Diligenti et al. Semantic-based regularization, AIJ 2017

Gnecco et al. Foundation of support constraint machines, Neural Computation 2015

Machine Learning

A CONSTRAINT-BASED APPROACH

ISBN: 978-0-08-100659-7
PUB DATE: November 2017
LIST PRICE: $£ 59.99 / € 70.95 / \$ 99.95$ FORMAT: Paperback
PAGES: c. 580

AUDIENCE

Upper level undergraduate and graduate students taking a machine learning course in computer science departments and professionals involved in relevant areas of artificial intelligence

A focused approach that covers the deep ideas of machine learning through a variety of specific techniques

KEY FEATURES

- It is an introductory book for all readers who love in-depth explanations of fundamental concepts
- It is intended to stimulate questions and help a gradual conquering of basic methods, more than offering "recipes for cooking."
- It proposes the adoption of the notion of constraint as a truly unified treatment of nowadays most common machine learning approaches, while combining the strength of logic formalisms dominating in the AI community.
- It contains a lot of exercises along with the answers, according to a slight modification of Donald Knuth's difficulty ranking.
- It comes with a companion Web site to assist more on practical issues.

QUOTES

A fairly comprehensive and original book on machine learning, including deep learning, written from a constraint-based perspective where Marco Gori shares his passion for the topic with his reader. The book comes also with a set of useful problems, exercises, solutions, as well as a companion web site.

Pierre Baldi, University of California Irvine
This very interesting book brings a fresh look at machine learning and deep learning from the broad point of view in which learning corresponds to satisfying constraints, encompassing the perceptual as well as the symbolic, soft as well as hard constraints.

Yoshua Bengio, Université de Montréal
A real tour-de-force across the landscape of a field -- machine learning -- which is developing very rapidly and is transforming a large swath of today's science and engineering of intelligence.

Tomaso Poggio, MIT

From parsimonious inference to induction

$f^{\star}=\operatorname{argmin}_{f \in \mathcal{F}_{\phi}}\|f\|_{P, \gamma} \quad$ learning and the active role $\forall x \quad \phi\left(x, f^{\star}(x), D f^{\star}(x)\right)=0 ? \quad$ inference
$\psi\left(x, f^{\star}(x)\right)$ inductive learning of new constraints by MMI clustering
$f^{\star}(x)$ maximize the sensibility

a cyclic process: learning from and of constraints!

ILP 2018

