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basis of the profile x 2 X of the individual (x, x). We assume that we are
given a finite collection of vector-based data X = {x



2 IR

d

,  = 1, . . . , `} that
belong to either a or b. Supervised learning is defined by the training set, that
can be expressed in terms of the unary predicates a(xa



) and b(xb



). Interest-
ingly, as shown in the following example, we can interpret the neural network
architecture itself as a collection of constraints.

Example 4.1 Let us consider the XOR predicate that is characterized by

y((0, 1), (1, 0))

¬y((0, 0), (1, 1)).
(1)

Now we can express the neural architecture of Fig. ?? by the constraints

x3 � �(w31x1 + w32x2)� b3 = 0

x4 � �(w41x1 + w42x2)� b4 = 0

x5 � �(w53x3 + w54x4)� b5 = 0.

(2)

Notice that while the data constraints (1) are often softly enforced, the architecture
constraints (2) are better suited for hard satisfaction. Clearly, this distinction between
data and architectural constraints holds in general, while one might claim in this case
also the data constraints would better be hardly enforced.

As put forward in the following example, one might also be interested in
classifications that involve more categories that are not necessary disjoint.

Example 4.2 Classification of four rectangles intersecting

Description: Given the four rectangles represented in figure (3) we want to
classify the points of the domain in four classes. Since the rectangles are intersect
themselves, this is not a classic clustering problem. We have the following
ground truth:

A(x) = true , x 2 [�3, +1] ⇥ [�1, +1],

B(x) = true , x 2 [�1, +3] ⇥ [�1, +1],

C(x) = true , x 2 [�1, +1] ⇥ [�1, +3],

D(x) = true , x 2 [�1, +1] ⇥ [�3, +1].

(3)

Domain Representation: As domain we consider 900 points in a uniform grid
of the square [�3, 3] ⇥ [�3, 3], and we take 100 random points from them to
create the testing set. The remaining points form the training set S.

SUPERVISED LEARNING

In this case we want to classify the points of the square [�3, 3] ⇥ [�3, 3] using
only few supervisions.
Domain Representation: We take six supervisions for each class, three positive
and three negative from the training set S. Formally we define the following
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FIGURE 5.4

Network for the evaluation of the XOR.

Unlike in the case of ∧ and ∨, the set

L = {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)} =

is clearly not linearly separable. Formally, this comes out directly when considering
that for any candidate separation line, the following proposition must hold:

(b < 0) ∧ (w2 + b) > 0 ∧ (w1 + b) > 0 ∧ (w1 + w2 + b < 0).

Now it is easy to see that there is no solution. If we sum up the second and the third
inequalities, we get w1 +w2 +2b > 0. Likewise, if we sum up the first and the fourth
inequalities, we get w1 + w2 + 2b < 0, so we end up with a contradiction. Hence,
we conclude that W⊕ = ∅. A nice graphical interpretation of W⊕ = ∅ is given in
Exercise 4.

The above discussion essentially proves that we cannot compute the XOR function
using a single LTU. We will now show that instead there are many ways to represent
the XOR using a multilayered network (Fig. 5.4).

Looking at Fig. 5.4, we immediately realize that input x1 and x2 must be mapped
by the hidden layer to x3 and x4 such that it can be linearly separated by the neuron 5.
For example, in Fig. 5.5A it is shown how this can be done using a “geometrical”
approach; here the two evenly dashed lines have equations x1 + x2 + 1/2 = 0 and
x1+x2+3/2 = 0. Neurons 3 and 4 classify the points of the Boolean square according
to the rule x3 = [x1 + x2 − 1/2 ≥ 0] and x4 = [−x1 − x2 + 3/2 ≥ 0]; in this way,
as one can see from Fig. 5.5A, the inputs are mapped into a separable configuration.

Another way to implement the XOR function can be done by noting that both ¬x1∧
x2 and x1 ∧ ¬x2 can be represented by an LTU with the Heaviside function. This is
a straightforward consequence of the above discussed representations of ∧ and ∨ by
threshold functions. We can promptly see that a function for the realization of ⊕ can
be constructed by using the canonical representation x1⊕x2 = (¬x1∧x2)∨(x1∧¬x2).

Now let us begin with the construction of (¬x1 ∧ x2) and (x1 ∧ ¬x2). When
thinking of the ∧ and ∨ realization, we can promptly realize that the solution is
similar, since any min-term is linearly separable. In Fig. 5.5B we can see the lines
corresponding with the two min-terms and the mapping of each example onto the
hidden layer representation. The line corresponding to the neuron 3 has equation
−x1 + x2 − 1/2 = 0, while the one that corresponds to 4 has equation x1 − x2 −
1/2 = 0; in fact, we have ¬x1 ∧ x2 = [−x1 + x2 − 1/2 ≥ 0] and x1 ∧ ¬x2 =
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x5 � �(w53x3 + w54x4 + b4) = 0
x4 � �(w41x1 + w42x2 + b4) = 0
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from the distinction of specific constraints — think of supervised pairs of a certain
function — with respect to high level constraints that cross the border of logic.

6.1 CONSTRAINT MACHINES
In this section we provide an in-depth discussion on most important environmental
interactions of the agent, which can also acquire abstract descriptions on the available
prior knowledge. Based on the parsimony principle, which is translated according to
the mathematical formalisms of Chapter 4 on kernel machines, a variational analysis
is presented, which discloses the functional structure of an agent while satisfying the
constraints. This gives rise to support constraint machines, a computational model
that closely resembles and generalizes support vector machines.

6.1.1 WALKING THROUGH LEARNING AND INFERENCE
We show that in many interesting cases constraints come up with a remarkably dif-
ferent structure that plays a fundamental role in the functional representation of the
agent. Before offering a unified view of semantic-based constraints, we consider a
few examples to appreciate the different mathematical structure that, as it will be
shown, has quite an important impact on the corresponding learning algorithms.

Circulating
coherence.

Let’s start with the translation of the principle of coherent decision. This is very well
exemplified by properly extending one of the learning tasks described in Chapter 3,
namely the one which deals with the prediction of the average weight of adults given
their height. It will be used as a running example for drawing some conclusion on the
structure of the involved constraints. We enrich the learning environment in such a
way that also the age is involved. We can introduce the following learning tasks:

fωh : W → H : h → ω(h),

fah : W → A : h → a(h),

fωa : A → W : a → ω(a),

(6.1.1)

where fωh estimates the weight from the height, fah estimates the age from the
height, and fωa estimates the weight from the age. Suppose we are simply using
linear functions for prediction on the basis of a collection of supervised examples.
Then we can learn the weights of the three functions by independent LMS. However,
in so doing, we are clearly missing the fundamental information that the predictions
are intertwined with each other, since the following constraint holds true:

fωh(h) = fωa ◦ fah(h).
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Enforcing Consistencies

344 CHAPTER 6 Learning and Reasoning With Constraints

This functional equation is imposing the circulation of coherence. Since the functions
are linear, this constraint can be converted to wωhh + bωh = wωawahh + (wahbah +
bωa). The equivalence ∀h ∈ R+ yields

wωawah − wωh = 0,

wahbah + bωa − bωh = 0.
(6.1.2)

Coherence hard
satisfaction.

Notice that we have ended-up with constraints that hold regardless of h, a, and ω, that
is, they are independent of the training set. Basically, the circulation of coherence re-
quires satisfying a set of linear equations that only depend on the weights of the
machines. This suggests a learning process where fah, fωa , and fωh are determined
by tracking the supervisions, as well as by satisfying the above pair of coherence
constraints (6.1.2). The precise formulation is discussed in Exercise 1. Notice that in
this learning problem, the coherence and pointwise constraints coming from the su-
pervised data are fundamentally different in their nature. While we typically tolerate
errors with respect to the supervised pairs of the training set, it makes sense to inter-
pret the consistency condition (6.1.2) as a truly hard constraint. The difference seems
to be rooted in the different structure of the constraints. While supervised learning
directly involves the pairs of the training set, the consistency constraints make a gen-
eral statement on the environment. In particular, as already stated, we can see from
Eq. (6.1.2) that there is no direct involvement of the input and output data, but only of
the model parameters. This is not restricted to this example! Whenever consistency
leads to a general condition, which is independent of the specific instances of data,
its translation by a corresponding hard constraint makes sense.

Tall
(σ (h − H) ≃ 1),

heavy
(σ (ω − W) ≃ 1)

persons are not
children

(σ (a − A) = 1)

and can be
expressed by
imposing the

constraint
σ (h − H)σ (ω −

W)(1−σ (a−A) =
0.

A broader investigation on this prediction problem leads to discovering other nice
aspects connected with its qualitative interpretation in ordinary life, which is typically
based on common sense reasoning. As an example, it’s quite obvious to notice that
tall and heavy persons are not children. This could be written as

σ (h − H)σ (fωh(h) − W)(1 − σ (fah(h)) − A) = 0, (6.1.3)

where σ is the logistic function. Here we need a fuzzy definition1 of tall, heavy, and
children. We could choose H = 180 cm, W = 100 kg, and A = 10 years old. Why
is Eq. (6.1.3) an appropriate formalism for expressing the above knowledge granule?
We can promptly check that the concepts of tall and heavy people are represented
by σ (h − H) ≃ 1 and σ (ω − W) ≃ 1, respectively, while the concept of nonchild
is represented by σ (a − A) ≃ 1. Eq. (6.1.3) arises when considering the estimates
ω = fωh(h) and a = fah(h). Under the assumption of linear prediction, the above
constraint can be converted into the weight space by imposing that ∀h ∈ R+ the
following equation holds true:

σ (h − H)σ (wωhh + bωh − W)(1 − σ (wahh + bah − A)) = 0. (6.1.4)

1Interestingly, we will see the rest of the chapter, these parameters can also be learned.
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8 Learning with Box Kernels
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Fig. 2. An SVM trained on a 2-class dataset using the box kernel (red crosses/boxes:
class +1, blue circles/boxes: class -1). (a) The separation boundary when only labeled
points are used; (b) using labeled box regions only; (d) using both labeled points and
regions; (e) training the classifier with a larger � (it penalizes the data fitting); (e)
when a labeled point (+) is incoherent with the label of the leftmost blue-dotted box
region; (f) the level curves of the function f in presence of incoherent supervisions.

how to sample the regions on which prior knowledge is given, and a considerable
amount of points may be needed, especially in high dimensions.

In each experiment, the features that are not involved in the available rules
are bounded by their min, max values over the entire data collection. Classifier
parameters were chosen by ranging them over dense grid of values in [10�5, 105],
and using a cross-validation procedure (described below).

Diabetes. The Pima Indian Diabets [12] dataset is composed by the results
of 8 medical tests for 768 female patients at least 21 years old of Pima Indian
heritage. The task is to predict whether the patient shows signs of diabetes.
KSVMs have been recently evaluated in this data [13], and we replicated the
same experimental setting. Two rules from the National Institute of Health are
defined, involving the second (PLASMA) and sixth (MASS) features,

(MASS ⇥ 30) ⌅ (PLASMA ⇥ 126) ⇤ positive

(MASS � 25) ⌅ (PLASMA � 100) ⇤ negative.

We note that the rules can be applied to directly classify 269 instances,
and only 205 of them will be correctly classified. A collection of 200 random
points is used to train the classifiers, 30 points to validate their parameters,
whereas the results of Table 1 are computed on the rest of the data, averaged
over 20 runs. When using rules and labeled point, BOX shows a slightly better
accuracy than KSVM but the two results are essentially equivalent. We noted
that the information carried in the labeled data points is enough to fulfill the
box constraints. Di�erently, when only rules (i.e. labeled box regions) are fed to

Pima Indian Diabetes Dataset

body mass index  
blood glucose
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TABLE 1
The average accuracy and standard deviation on the

diabetes data set in the setup of [18] (KSVM).

Method Mean Accuracy Std
KSVM (rules only) 64.23% 1.19%
BOX (rules only) 70.44% 1.03%

KSVM 76.33% 0.63%
BOX 76.39% 1.30%

In that paper, two rules from the National Institute
of Health are introduced, which involve the second
(PLASMA) and sixth (MASS) features, that is

(MASS ⌅ 30) ⌃ (PLASMA ⌅ 126) ⇧ positive

(MASS ⇤ 25) ⌃ (PLASMA ⇤ 100) ⇧ negative.

Notice that the rules can be applied to classify di-
rectly 269 instances, but only 205 of them are correctly
classified, that is the given rule-based knowledge
is affected by a significant degree of uncertainty. A
collection of 200 random points is used to train the
classifiers, 30 points to validate them, whereas the
results of TABLE 1 are computed on the rest of the
data, averaged over 20 runs. BOX and KSVM exhibit
roughly the same accuracy, but when only rules (i.e.
labeled box regions) are fed to the classifier, then the
generalization capability of BOX is significantly better
than KSVM’s.

4.2 Breast cancer prognosis
The Wisconsin Breast Cancer Prognosis (WBCP) [17]
is a collection of records that represent follow-up data
for 198 cases of breast cancer, divided in patients that
remained cancer free or that experienced a recurrence
of the cancer (the recurrence time or the disease-free
time are available). Each record contains 32 features,
out of which we find the diameter of the excised
tumor (SIZE) and the number of metastasized lymph
nodes (NODES). This dataset has been used in two
distinct settings in [2], [4] and in [5], [6].

In [2], [4] the recurrence of cancer is evaluated in a
period of 60 months by KSVM and SKSVM (Gaussian
kernel). A set of 41 (out of 110) records corresponds to
patients whose cancer had recurred. Two rules were
provided by a doctor,

(SIZE ⌅ 4) ⌃ (NODES ⌅ 5) ⇧ recurrent

(SIZE ⇤ 1.9) ⌃ (NODES = 0) ⇧ non recurrent,

which can be applied to directly classify 32 instances.
Notice that only 22 of them are correctly classified.
??? Stefano The classifier accuracy was determined
by 10-fold cross-validation. The second rule contains
an equality that we converted to (NODES ⇤ �) ⌃
(NODES ⌅ ��), where � = 10�4. In TABLE 2
we report the classification accuracies of the different
algorithms. BOX overcomes slightly the other algo-
rithms.

TABLE 2
The average accuracy and standard deviation on the

WBCP data in the setup of [2] and [4] (KSVM and
SKSVM).

Method Mean Accuracy Std
KSVM (rules only) 69.09% 18.28%
BOX (rules only) 67.27% 14.34%

SKSVM 68.18% 16.17%
KSVM 69.09% 14.96%
BOX 70% 12.15%
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Fig. 6. Number of metastasized lymph nodes versus
tumor size in the WPBC (2 years) data, where blue
circles are recurrent cases and red crosses are non
recurrent ones. The black-bounded regions are the
knowledge base on the former class (approximated in
box regions by the blue boxes).

In [5], [6] the task is to predict if a patient will
remain cancer free for at least 24 months, investigated
with the NKC and PKC algorithms (Gaussian kernel).
The 81.9% of the 155 records are cancer free, so that
the learning task is significantly harder. A set of 3
rules was introduced from a simulated oncological
surgeon’s advice. An expert selected 3 regions on the
space determined by the SIZE and NODE features
that are supposed to lead to a recurrence of the cancer.
Their complete expressions can be found in [5] and
they are depicted in Fig. 6. However, we note that
both NKC and PKC rely on a discrete sampling of
the available knowledge sets, that in this experiment
was performed by considering the data points that
fall inside the supervised region [5], [6]. We approx-
imated the knowledge regions with boxes, designed
to include the same points on which NKC and PKC
sample the space. The accuracy of each algorithm is
measured by a leave-one-out procedure (TABLE 3).
For each experiment, a 10-fold cross-validation of the
training data was used to validate the classifiers (for a
total of 155 ·10 runs). Introducing prior knowledge by
means of the BOX kernel leads to the same results of
NKC and PKC. As a matter of fact, the misclassified
points falls in regions that are not affected by the
given knowledge. The significance of this result is in
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algorithms. BOX overcomes slightly the other algo-
rithms.

TABLE 2
The average accuracy and standard deviation on the

WBCP data in the setup of [2] and [4] (KSVM and
SKSVM).

Method Mean Accuracy Std
KSVM (rules only) 69.09% 18.28%
BOX (rules only) 67.27% 14.34%

SKSVM 68.18% 16.17%
KSVM 69.09% 14.96%
BOX 70% 12.15%
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Fig. 6. Number of metastasized lymph nodes versus
tumor size in the WPBC (2 years) data, where blue
circles are recurrent cases and red crosses are non
recurrent ones. The black-bounded regions are the
knowledge base on the former class (approximated in
box regions by the blue boxes).

In [5], [6] the task is to predict if a patient will
remain cancer free for at least 24 months, investigated
with the NKC and PKC algorithms (Gaussian kernel).
The 81.9% of the 155 records are cancer free, so that
the learning task is significantly harder. A set of 3
rules was introduced from a simulated oncological
surgeon’s advice. An expert selected 3 regions on the
space determined by the SIZE and NODE features
that are supposed to lead to a recurrence of the cancer.
Their complete expressions can be found in [5] and
they are depicted in Fig. 6. However, we note that
both NKC and PKC rely on a discrete sampling of
the available knowledge sets, that in this experiment
was performed by considering the data points that
fall inside the supervised region [5], [6]. We approx-
imated the knowledge regions with boxes, designed
to include the same points on which NKC and PKC
sample the space. The accuracy of each algorithm is
measured by a leave-one-out procedure (TABLE 3).
For each experiment, a 10-fold cross-validation of the
training data was used to validate the classifiers (for a
total of 155 ·10 runs). Introducing prior knowledge by
means of the BOX kernel leads to the same results of
NKC and PKC. As a matter of fact, the misclassified
points falls in regions that are not affected by the
given knowledge. The significance of this result is in

Wisconsin Breast Cancer Prognosis

diameter of the tumor  
number of metastasized lymph nodes
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Reconstruction of overwritten chars 

Figure 11: Some examples of the starting overlapped image and the foreground
and background digits involved.

classes.

8x in fore0 : zero(fore(x)) ^ ¬one(fore(x)) ^ . . . ^ ¬nine(fore(x))
8x in back0 : zero(back(x)) ^ ¬one(back(x)) ^ . . . ^ ¬nine(back(x))

...
8x : zero(fore(x)) _ one(fore(x)) _ . . . _ nine(fore(x)) (23)
8x : zero(back(x)) _ one(back(x)) _ . . . _ nine(back(x))

8x : zero(fore(x)) ! (¬one(fore(x)) ^ . . . ^ ¬nine(fore(x))
8x : zero(back(x)) ! (¬one(back(x)) ^ . . . ^ ¬nine(back(x))

...

These rules on the functions fore and back guarantee the good classification of the gen-
erated images. However, in order to enforce the correspondence between the original
digits and the outputs of the generators we also need

8x : equal(couple(fore(x), back(x)), x))

8x, y in Images0 : equal(fore(couple(x, y)), x)

8x, y in Images0 : equal(back(couple(x, y)), y) (24)
8x in Images0, 8y in Images1 : equal(fore(couple(x, y)), x)

8x in Images0, 8y in Images1 : equal(back(couple(x, y)), y)

...

Query: Given any image of overlapped digits in ImagesPair return the foreground and
background digits in Images.
Execution: As we mentioned above, the learning of the two generation functions fore

and back is carried out in two different steps. At first, we learn the traditional MNIST
classifiers zero, one, two, . . . , nine enforcing the constraints 22. Once such functions
are learned we fix them and we exploit these classifiers to learn the generative functions

36

Recognize the foreground 
and background numbers

I was told that the foreground char is
less or equal to the background char
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Inference in formal logic

Example 4.14 Parental Inference

While LIRICO is mainly designed for integrating logic and deep learning, it is also
possible to use it as a tool for pure logical reasoning. This case is illustrated by the
following example, where a few individuals are added to the domain People without
any underlying data representation. This can be defined in the LIRICO environment
as:

Domain(label="People")
Individual(label="Marco", "People")
Individual(label="Giuseppe", "People")
Individual(label="Michelangelo", "People")
Individual(label="Francesco", "People")
Individual(label="Franco", "People")
Individual(label="Andrea", "People")

The individuals are assumed to be related via parental relations defined by the follow-
ing predicates:

Predicate(label="fatherOf", ("People", "People"))
Predicate(label="grandFatherOf", ("People", "People"))
Predicate(label="eq", ("People", "People"), function=eq)

where the given binary predicate eq holds true iff the two input individuals are the
same person.

Finally, some known relations are known between the individuals:

Constraint("fatherOf(Marco, Giuseppe)")
Constraint("fatherOf(Giuseppe, Michelangelo)")
Constraint("fatherOf(Giuseppe, Francesco)")
Constraint("fatherOf(Franco, Andrea)")

The prior knowledge provided for this task expresses some well-known semantics
about parental constraints. For example, LIRICO allows to express that nobody can
be father or grandfather of himself as:

Constraint("forall x: not fatherOf(x,x)")
Constraint("forall x: not grandFatherOf(x,x)")

Another two rules state that fathership is an asymmetric relation, so that if you
are father or grandfather of someone, he can not be your father or grandfather. Fur-
thermore, someone can not be father and grandfather of someone at the same time,
these are expressed in LIRICO as:

Constraint("forall x: forall y: fatherOf(x,y) -> not fatherOf(y,x)")
Constraint("forall x: forall y: grandFatherOf(x,y)
-> not grandFatherOf(y,x)")
Constraint("forall x: forall y: fatherOf(x,y) -> not grandFatherOf(x,y)")
Constraint("forall x: forall y: grandFatherOf(x,y) -> not fatherOf(x,y)")

Another rule expresses that the father of the father is a grandfather, and that one
person has at most one father in the considered world:
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Constraint("forall x: forall y: forall z: fatherOf(x,z) and fatherOf(z,y) ->
grandFatherOf(x,y)")

Constraint("forall x: forall y: forall z: (fatherOf(x,y) and not eq(x,z)) ->
not fatherOf(z,y)")

The learning task seeks to infer the unknown relations among the individuals. Af-
ter starting the learning phase, LIRICO outputs the predicate values for all the ground-
ings, and it correctly concludes that the following facts hold true: grandFatherOf("Marco",
"Michelangelo"), ¬grandFatherOf("Marco", "Giuseppe"), grandFatherOf("Marco", "Francesco"),
etc. On the other hand nothing can be concluded regarding who is the grandfather of
“Franco” and “Andrea”, so leaving these values to be equal to their prior values.

One the training has been performed and the grounded predicates have been com-
puted, LIRICO provides an easy interface for performing model checking also in this
symbolic environment. For example, let’s suppose that we want to check whether the
following rule holds true according to the computed assignments:

Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and
fatherOf(y,z) -> fatherOf(x,y)")

As expected, the evaluation of the rule performed by returns that the rules is perfectly
verified by the computed assignments.

Example 4.15 Consider Winston’s animal recognition example- typically used to
illustrate Prolog.

Challenges

1. Discuss different t-norms

2. Address the issue of local minima by isolating logic fragments that yield
local minima free optimization.

4.5 Inference in the environment
Description: Given a collection of logic constraints and a set of data on which to
ground them, determine the truth of unary predicates acting on the features of
a new individual. Inference in the environment is also regarded as the process of
verifying whether a given argument is valid when grounded on a certain data set.

Example 4.16 Old boxes example from supervised, unsupervised learning

Example 4.17 Same example used for formal inference where individuals are given
a profile characterized by two features.

Example 4.18 Learning of Spatial Relations among Rectangles

Description: In this example, we are interested in describing the mutual positions of a
set of 2d rectangles on a plane by means of some spatial relations. For instance, given
two rectangles x and y, we can say that x is on the left of y, and we take into account
the relations right, below, above, inside and contains as well. For this task, we assume

28
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Fig. 4: An example of the trained generative functions, The middle and right
pictures shown the outputs of the functions next and previous functions fed
with the image on the left, respectively.

The learning task seeks to infer the unknown relations among the individuals.
After starting the learning phase, CLARE outputs the predicate values for
all the groundings, and it correctly concludes that the following facts hold
true: grandFatherOf("Marco", "Michelangelo"), ¬grandFatherOf("Marco",
"Giuseppe"), grandFatherOf("Marco", "Francesco"), etc. On the other hand
nothing can be concluded regarding who is the grandfather of “Franco” and
“Andrea”, so leaving these values to be equal to their prior values.

One the training has been performed and the grounded predicates have been
computed, CLARE provides an easy interface for performing model checking also
in this symbolic environment. For example, let’s suppose that we want to check
whether the following rule holds true according to the computed assignments:

Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and

fatherOf(y,z) -> fatherOf(x,y)")

As expected, the evaluation of the rule performed by returns that the rules is
perfectly verified by the computed assignments.

Pattern Generation. In this task, we exploit a set of around 15000 images
of handwritten digits, obtained extracting only the 0, 1 and 2 digits from the
MNIST dataset. We want to solve both a classification task, aiming at identifying
which digit an image represents, and a generation task, learning some generative
functions producing images from images. In particular, we want to learn two
generative functions, next and previous, which, given an image of a digit, will
produce an image of the next and previous digit, respectively. In order to give
each digit a next and a previous digit in the chosen set, we used a circular
mapping such that 0 is the next digit of 2 and 2 is the previous digit of 0.

This generative task can be solved in two steps: first, we learn the classifier
in a purely supervised fashion, then the image generator is trained in a purely
unsupervised fashion by simply exploiting the knowledge of the relations among
classes and the inverse nature of the next and previous operators.
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346 CHAPTER 6 Learning and Reasoning With Constraints

condition can be regarded as one to be hardly ever satisfied! However, unlike (6.1.2),
which must be enforced for any point of the space, this probabilistic constraint ex-
hibits an inherent global structure. As we will see in Section 6.1.3, their impact in
learning is remarkably different. In addition, while constraint (6.1.6) acts in a varia-
tional optimization problem, constraint (6.1.2) requires working at finite dimension.

Relational tasks
and reasoning.

Now we want to better capture the essence of the functional expression of knowl-
edge granules, a topic which will be deeply investigated in Section 6.2. The common
sense reasoning stated by Eq. (6.1.3) is centered around the asymmetric structure
of the premises and the conclusions in logic statements. For example, assume that
fi : X → [0 . . 1], i = 1, 2 and bear in mindThe asymmetry of

implication: The
constraint

f1(x)(1−f2(x)) =
0 allows us to draw
the conclusion that

if f1(x) = 1 then
f2(x) = 1, but not

the other way
around!

the association with Boolean-like
decisions, so fi(x) ≃ 0 and fi(x) ≃ 1 mean that the corresponding concept is false
and true, respectively. Any constraint of the form

∀(x1, x2) ∈ X 2 : f1(x)(1 − f2(x)) = 0 (6.1.7)

shares the underlying inferential principle behind Eq. (6.1.3). If f1(x) = 1 then the
satisfaction of the constraint implies f2(x) = 1. However, the converse doesn’t hold
true, since if f2(x) = 1 then any value of f1(x) is admitted. We can immediately
see that this is in fact a property of the images of the functions, so we can generalize
to functions operating on different domains. Clearly, in case f1 : X1 → R and
f2 : X2 → R, with X1 ≠ X2, the constraint f1(x1)(1 − f2(x2)) = 0 enjoys the
same properties. Suppose that also f2(x2)(1 − f1(x1)) = 0 holds true. Of course, if
we sum them up we getThe symmetry of

equivalence.

f1(x1) + f2(x2) − 2f1(x1)f2(x2) = 0, (6.1.8)

which has gained a symmetric structure. We can see that it is satisfied only if f1(x1) =
f2(x2) = 0 or f1(x1) = f2(x2) = 1 (see Exercise 3). Basically, when we interpret the
values of the functions in the Boolean domain, this constraint translates the concept of
logic equivalence. It’s quite easy to realize that this is not the only way of expressing
equivalence and, likewise, the implication stated by Eq. (6.1.7) can be expressed in
different ways — although not all of them properly express the deep meaning of
decision-like equality (see Exercise 4).

Formal domains
and the lack of

connection with the
environment. The

constraints
originate a

combinatorial
structure: The case

of N -queens.

Now, let us jump to another example, which is substantially different in its deep
nature. We consider the extreme case of purely discrete constraints, namely the case
in which there is no feature-based representation of the environment. So far the learn-
ing tasks have been regarded as real-valued functions over a certain vector space X ,
whereas here we consider the case of formal domains, where no features are given.
For example, the prediction of the person weight is a regression problem which makes
sense because of the information coming from the height and age of the person, and
it is quite clear that, once we miss a similar feature-based representation, we get in
trouble concerning prediction. However, this is not the case in all intelligent tasks
which present a strong logical structure. Let’s consider the problem of accommodat-
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where TL is the Łukasiewicz t-norm. This arises from Eq. (6.2.85) as follows. First,
notice that

g−1 ◦ T
(
g(x), g(y)

)
= g−1 ◦ γ −1(γ ◦ g(x) + γ ◦ g(y)

)

= (γ ◦ g)−1(γ ◦ g(x) + γ ◦ g(y)
)

= β−1(β(x) + β(y)
)

= TL(x, y).

Let w := g(x) and z := g(y), then we have T (w, z) = gTL(g−1(w), g−1(z)).
Residuum.Given a t-norm T , its residuum is defined by

(x ⇒ y) = sup {z| T (x, z) ≤ y} . (6.2.87)

The residuum (x ⇒ y) is also denoted as T ⋆(x, y) and is a sort of adjoint of T (x, y).
In order to grasp its meaning, we start considering the case x ≤ y, where we ex-
pect that the implication returns “high” values. This follows straightforwardly when
considering that T (x, z) ≤ T (x, 1) = x and then

sup {z| T (x, z) ≤ x ≤ y} = 1.

Clearly, the converse holds as well, and therefore (x ⇒ y) = 1 iff x ≤ y. Now,
let us consider its violation. We need to study (x ⇒ y) with x > y. Now we have
T (x, z) ≤ x, that is, T (x, z) ≤ min {x, z}. Hence

(x ⇒ y) = sup {z| T (x, z) ≤ min {x, z} ≤ y} = y.

The converse holds true as well. That is, (x ⇒ y) = y iff x > y. Clearly,
(1 ⇒ y) = y. The difference in the translation of ⇒ using the residuum and the
direct application of the t-norms is very well illustrated in the case of the p-norm.
The classic propositional calculus definition of the implication ¬(x ∧ ¬y) would be
translated into

x ⇒ y ! T (x, y) = 1 − x · (1 − y).

For example, for x = 0.55 and y = 0.6 we get T (x, y) = 0.78, whereas (0.55 ⇒
0.6) = 1. Likewise, if x = 0.55 and y = 0.2, we have T (0.55, 0.2) = 0.56. Clearly,
this suggests that the implication holds true, which does not reflect its meaning. On
the other hand, (0.55 ⇒ 0.2) = 0.2, which is definitely preferable for a coherent
definition of ⇒. To sum up, the given definition of residuum captures perfectly the
meaning one would like to attach to the implication.

Residua of classic
t-norms.

The residua of the three t-norms, Goguen, Gödel, and Łukasiewicz, defined
by (6.2.77), are (see Exercise 8)

x
P⇒ y = y/x, (6.2.88)

x
G⇒ y = y, (6.2.89)

x
Ł⇒ y = 1 − x + y. (6.2.90)
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to represent different kinds of sensorial data along with their relations, as
well as to express abstract knowledge on the tasks and embrace logic de-
scriptions. Examples of constraints come out naturally in different contexts:
one might want to enforce the probabilistic normalization of a set of func-
tions modeling a classification task, or the probabilistic normalization of a
density function, or to impose coherent decisions of the classifiers acting
on different views of the same pattern (Melacci et al., 2009). The expressive
power of constraints becomes more significant when dealing with specific
problems coming from, among others, vision, control, text classification,
ranking in hypertextual environment, and prediction of the stock market.
While the linguistic description to express a constraint can be of many dif-
ferent types, including those based on logic formalisms, in order to describe
knowledge granules, we can always end up with real-valued multivariable
functions involving the inputs and the learning tasks.

We propose to build an interaction among different tasks by introducing
various kinds of constraints; they are summarized in the following defini-
tion, which follows the terminology used in variational calculus:

Definition 1 (types of constraints). Let X denote a subset of the perceptual
space Rd , F a space of functions f : X → Rn, Xi open subsets of X , φi : Xi ×
Rn → R and φ̌i : Xi × Rn → R continuous functions, Φi : F → R and Φ̌i : F →
R continuous functionals, and mH, mI , m̌H, and m̌I positive integers. We consider
the following types of constraints:

i. Holonomic (ho) bilateral (bi):

∀x ∈ Xi ⊆ X : φi (x, f (x)) = 0, i = 1, . . . , mH .

ii. Holonomic (ho) unilateral (un):

∀x ∈ Xi ⊆ X : φ̌i (x, f (x)) ≥ 0, i = 1, . . . , m̌H .

iii. Isoperimetric (is) bilateral (bi):

Φi ( f ) = 0, i = 1, . . . , mI .

iv. Isoperimetric (is) unilateral (un):

Φ̌i ( f ) ≥ 0, i = 1, . . . , m̌I .

v,vi. Pointwise (pw) bilateral (bi) and pointwise (pw) unilateral (un): as con-
straints i and ii , respectively, with each Xi made up of finitely many
points (in this case, the continuity of φi —respectively, of φ̌i —is required
with respect to the second vector argument).

For notational simplicity, when dealing with constraints of the same type,
the notations mH, mI, m̌H , and m̌I will be replaced simply by m. It is worth
remarking that holonomic constraints express local properties, since they
hold ∀x ∈ Xi. Isoperimetric constraints express global properties of f (apart
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L3 - From Babbling to Conversation

2.5 Knowledge representation in the continuous setting
Now, let us assume that the processing of the sentence x ∈ S yields the real-valued rep-
resentation x ∈ Rn . Throughout this paper, we shall use the notation x ∼ x to denote the
relation between these two representations. We begin focussing on the knowledge that is
expressed in a given sentence, whereas in the next section, we will deepen the issue by
involving semantics associated with single words within the sentences. Any of the vari- sentences as

knowledge
granules

ables introduced in the previous section can now be thought of as a unary predicate. For
example, tiger(x) returns evidence of the presence of a tiger in the sentence x. Likewise,
the function ftiger ∶ X → R ∶ x → ftiger(x) returns a number to provide evidence that
the sentence is talking about a tiger in the sentence x ∼ x, that is H( ftiger(x)) = tiger(x),
where H(⋅) is the Heaviside function2. proper and

common nounsIt is important to point out that the real-valued interpretation of the sentence bene-
fits from a pre-processing step aimed at distinguishing knowledge proper and common
nouns. A proper noun refers to a unique entity, such as “Monte Bianco", “Paris", “John",
whereas a common noun, usually refers to a class of entities (animal, person, corporation).
As already pointed out, it might be convenient to distinguish proper and common names.
For example, the knowledge expressed by formula (2.5) involves proper nouns, whereas
Tab. 2.1 involves common names. Interestingly, the noun distinction can be given a nice in-
terpretation according to the is-a relation of semantic networks. In the given knowledge
base, a proper name can be thought of as a source node, with no incoming arcs. Paris,
Rome and London are proper nouns and the same holds true for the names three names of
apple. Proper nouns cannot receive an incoming link from another node. The distinction
in important so as before converting any xo ∈ S onto x ∈ R it is convenient to replace any
name of animal with the dummy symbol name.

The KB of Tab. 2.1 can be given a real-valued representation by using classic t-norm
conversion. Let us illustrate this process by an example. A general treatment is given
in [2]. Let x us consider a text composed of the following three sentences

xo ∼ Fajita has got hairs and hoofs; its color is white with black
stripes.
yo ∼ Randy is a carnivore, has a tawny color, and it has got black
stripes.
zo ∼ They are close and it’s night in the savanna.

which are converted by F onto x, y, and z, respectively. Let us focus on xo . Its processing
requires the replacement Fajita with name, and then we can use the corresponding x to
compute the real-valued representation x ∈ Rn . Now, let us consider formula R1, R7, and
R13, which become

hair(x)⇒ mammal(x)
mammal(x)∧ hoofs(x)⇒ ungulate(x)

ungulate(x)∧ white(x)∧ blackstripes(x)⇒ zebra(x).

2The equality assumes the isomorphism false� 0 and true� 1.
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Figure 2.3: Proper vs common nouns: interpretation according to the is-a relation of semantic net-
works. In the given knowledge base, a proper name can be thought of as a source node,
with no incoming arcs. Paris, Rome and London are proper nouns and the same holds
true for the names three names of apple. Proper nouns cannot receive an incoming link
from another node.

Let us construct the real-valued functions fhair, fmammal, fhoofs, fungulate, fwhite, fblackstripes,
and fzebra, that like ftiger, are associated with the above unary predicates, and assume that
the degree of truth in the [0, 1] range. real-valued

constraints
by t-norms

In so doing, when using the p-norm, we can easily see that the above granules of knowl-
edge turn out to be expressed by (see e.g. [3, 2] for details)

fhair(x)(1− fmammal(x)) = 0 (2.9)

fmammal(x) fhoofs(x)(1− fungulate(x)) = 0

fungulate(x) fwhite(x) fblackstripes(x)(1− fzebra(x)) = 0.

These real-valued constraints illustrate the inferential process that takes place as soon as
we gain evidence that the animal has got hairs, hoofs, white color, and black stripes.
In this case, if the sub symbolic representationof x leads us to conclude that fhair(x) �
1, fhoofs(x) � 1, fwhite(x) � 1 and fblackstripes(x) � 1 then we ca easily see that from the
constraints (2.9) we draw the conclusion fzebra(x) � 1. It is very instructive to see how the
graph propagation reasoning that takes place on semantic nets has a direct counterpart
in the propagation of evidence, not only on logic formula, but also on the correspond-
ing real-valued set of constraints. Interestingly, since the sentence xo contains the dummy
symbol name, which corresponds with Fajita, and we have gained the additional semantic
evidence on zebra, we can immediately draw the conclusion that zebra(name), and, there-
fore, zebra(Fajita). Notice that all other semantic categories involved in x cannot take on
a proper nouns, and, therefore, the match between zebra and Fajita is non-ambiguous.
This means that we can draw conclusions on the identity of Fajita from the original given
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Figure 2.3: Proper vs common nouns: interpretation according to the is-a relation of semantic net-
works. In the given knowledge base, a proper name can be thought of as a source node,
with no incoming arcs. Paris, Rome and London are proper nouns and the same holds
true for the names three names of apple. Proper nouns cannot receive an incoming link
from another node.

Let us construct the real-valued functions fhair, fmammal, fhoofs, fungulate, fwhite, fblackstripes,
and fzebra, that like ftiger, are associated with the above unary predicates, and assume that
the degree of truth in the [0, 1] range. real-valued

constraints
by t-norms

In so doing, when using the p-norm, we can easily see that the above granules of knowl-
edge turn out to be expressed by (see e.g. [3, 2] for details)

fhair(x)(1− fmammal(x)) = 0 (2.9)

fmammal(x) fhoofs(x)(1− fungulate(x)) = 0

fungulate(x) fwhite(x) fblackstripes(x)(1− fzebra(x)) = 0.

These real-valued constraints illustrate the inferential process that takes place as soon as
we gain evidence that the animal has got hairs, hoofs, white color, and black stripes.
In this case, if the sub symbolic representationof x leads us to conclude that fhair(x) �
1, fhoofs(x) � 1, fwhite(x) � 1 and fblackstripes(x) � 1 then we ca easily see that from the
constraints (2.9) we draw the conclusion fzebra(x) � 1. It is very instructive to see how the
graph propagation reasoning that takes place on semantic nets has a direct counterpart
in the propagation of evidence, not only on logic formula, but also on the correspond-
ing real-valued set of constraints. Interestingly, since the sentence xo contains the dummy
symbol name, which corresponds with Fajita, and we have gained the additional semantic
evidence on zebra, we can immediately draw the conclusion that zebra(name), and, there-
fore, zebra(Fajita). Notice that all other semantic categories involved in x cannot take on
a proper nouns, and, therefore, the match between zebra and Fajita is non-ambiguous.
This means that we can draw conclusions on the identity of Fajita from the original given
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in the propagation of evidence, not only on logic formula, but also on the correspond-
ing real-valued set of constraints. Interestingly, since the sentence xo contains the dummy
symbol name, which corresponds with Fajita, and we have gained the additional semantic
evidence on zebra, we can immediately draw the conclusion that zebra(name), and, there-
fore, zebra(Fajita). Notice that all other semantic categories involved in x cannot take on
a proper nouns, and, therefore, the match between zebra and Fajita is non-ambiguous.
This means that we can draw conclusions on the identity of Fajita from the original given
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Figure 2.3: Proper vs common nouns: interpretation according to the is-a relation of semantic net-
works. In the given knowledge base, a proper name can be thought of as a source node,
with no incoming arcs. Paris, Rome and London are proper nouns and the same holds
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diagram, which explains the functional process that drives to the construction of x and x̃.
As it will be better explained in the remainder of the report, the representation of a generic
sentence might require a pre-processing aimed at extracting proper nouns that are typically
involved in facts. This is carried out by F , which transforms the original sentence xo onto
x = F(xo).
EXAMPLE 2.3
Let us consider the sentence

xo ∼ The Everest, which is world’s highest mountain, is 8,848 meters tall.

is converted onto x = F(xo) ∼
The NAME, which is world’s highest mountain,

is NUMBER meters tall.

Notice that in Fig. 2.2 we can see the parallel extraction of syntactical structures that takes
place at symbolic and sub-symbolic level by means of the parsing tree T (x) and of function
z ∶X d →X d . Clearly, these functions need to satisfy the consistency condition:

∀x ∈ S ∶ f̃i ○T (x) = z ○ fe(x), (2.8)

where S is the set of sentences in the linguistic world of the agent. Now, since fe and f̃e are
learned as previously described to represent sentences and their syntactical representation
at the sub-symbolic level, and since T denotes classic construction techniques [] of the
parsing tree of the sentence x, as it will be deepened later, the above consistency condition
turns out to be useful for learning function z.

xxo
F

x

x̃ x̃

z

T

fe

f̃i

Figure 2.2: Extraction of sub-symbolic representations from sentence xo . First, proper nouns are
removed by functionF , so as to return x. Then Function fe computes the overall repre-
sentation x = fe(x) ∈ Rd . Likewise, function f̃i computes the syntactical representation
x̃ = f̃i(x) ∈ Rd . Function T constructs the parsing tree of x and z returns the sub-
symbolic representation of the parsing tree from the sub-symbolic representation x of
x.
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multi-index α with n nonnegative components α j, we write Dαu to denote
∂ |α|

∂α1...∂αn
u, where |α| :=

∑n
j=1 α j.

Definition 5 (finite-order linear differential operator). We define the vectorial
finite-order linear differential operator P := [P0, . . . , Pl−1]′ as the l-tuple of oper-
ators Pi , i = 0, . . . , l − 1, acting on the Sobolev space Wk,2(X ) and such that

Pi :=
∑

|α|≤ki

bi,α Dα,

where ki ≤ k and the bi,αs are suitable real coefficients. The formal adjoint of P is
defined as the operator P⋆ = [P⋆

0 , . . . , P⋆
l−1]′ whose ith component P⋆

i has the form

P⋆
i :=

∑

|α|≤ki

(−1)|α|bi,α Dα.

We also define the operator

L := (P⋆)′ P.

For two functions u1, u2 : X → R such that the right-hand side of equa-
tion 2.1 is well defined and finite, we let

⟨u(1), u(2)⟩ :=
∫

X
u(1)(x)u(2)(x) dx. (2.1)

Definition 6 (parsimony index). Let P := [P0, . . . , Pl−1]′ be a finite-order
linear differential operator, ∥ f j∥2

P := ⟨P f j , P f j ⟩ :=
∑l−1

r=0
∫
X (Pr f j (x))2dx and

γ ∈ Rn a vector of positive components. We endow the task space F :=
Wk,2(X ) × . . . × Wk,2(X )︸ ︷︷ ︸

n times

with a seminorm

∥ f ∥P,γ :=

⎛

⎝
n∑

j=1

γ j∥ f j∥2
P

⎞

⎠
1/2

=

⎛

⎝
n∑

j=1

γ j

l−1∑

r=0

∫

X
(Pr f j (x))2dx

⎞

⎠
1/2

.

The parsimony index is given by the functional

E(·) := ∥ · ∥2
P,γ . (2.2)

Constraints turn out to be loss functions Parsimony Principle
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The above discussion on differential operators can be enriched at least into different directions. First,
we can replace the ak coefficients with functions ak(·) : X ⌅ IR and, second, we can consider an infinite
number of differential terms (m ⌅ ⇧) We mainly consider Sobolev spaces Fk which is composed of
functions whose k-th derivatives belong to L2. In the following we deal with maps C⇥(X ⇤ IRd) ⌅
C⇥(X ⇤ IRd) We can measure smoothness by using pseudo-differential operators. Let F be a Sobolev
space where we introduce the following operator P .

Definition 3.1 A linear partial differential m-order operator on IRd is a map C⇥(X) ⌅ C⇥(X) of the
form

Pu(x) =
⌅

|�|�m

a�(x)D�
xu(x)

where a� ⌃ C⇥(X),

D�
x =

�
1
i

⇥|�| ⌥�1

⌥x�1
1

. . .
⌥�d

⌥x�d
d

and |�| = �1 + . . . + �d is a multi-index.

We are interested in the special case in which a�(x) is constant, that is a�(x) = a�. It is easy to see
that the previous examples are pseudo-differential operators. We can associate any p(x, ⌥x) : H ⌅ H
with p(x,⇥) =

⇤
|�|�m a�(x)(i⇥)�, which is polynomial in ⇥. This turns out to be useful when using the

Fourier transform and is referred to as the symbol of the operator. The notion of symbol is central to pseudo-
differential operators, since their transformation of a function can be thought of as the inverse Fourier
transform of the symbol in the Fourier variable times the Fourier transform of the function itself. There
are some interesting differences with respect to ordinary differential operators. First, pseudo-differential
operators are not local, a property that is met by differential operators, for which the smoothness of Pu

holds in the same set in which u is smooth. The idea behind locality is that one only needs the value of
a function in the a neighborhood if a point to compute the effect of the operator. The ⇥ operator is just
an example of non-locality. Even if u(x) is smooth in x, there are cases in which, ⇥u(x) is not. Second,
the inverse of a pseudo-differential operator is another pseudo-differential operator, whereas this does not
hold for differential operators. There is a nice interpretation using the Fourier transform of this property.
For any differential operator the symbol is a polynomial, whose inverse is not a polynomial. On the op-
posite, the symbol of pseudo-differential operators is a function and, its inverse, is still a function in the
same space. Since < Pu, Pu >=< u,P ⇥Pu >=< u,Lu > , it turns out to be interesting to discuss the
positiveness of L = P ⇥P which, of course, is Hermitian.

4 Necessary conditions

Here we discuss necessary conditions to address the proposed problem in the classic case expressed by
equation (1) and in the formulation based on constrained optimization in which the objective function

10

under proper boundary conditions ...

Semi-norm in Sobolev Spaces
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check of a new constraint

Facing the intractability coming from formal logic formal  
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Support Constraint Machines

beyond formal logic, since it takes place on a wider
notion of environments in which logic clauses and su-
pervised examples complement each other.

2. Learning from constraints

We think of an intelligent agent acting in the per-
ceptual space X ⌃ IRd as a vectorial f unction f =
[f1, . . . , fn]⇥, where ⌦j  INn : fj  W k,p belongs to
a Sobolev space, that is to the subset of Lp whose func-
tions fj admit weak derivatives up to some order k and
have a finite Lp norm. The functions fj : j = 1, . . . , n,
are referred to as the “tasks” of the agent. We can in-
troduce a norm on f by the pair (P, ⇥), where P is a
pseudo-di⇥erential operator and ⇥  IRn is a vector of
non-negative coordinates

R(f) = ◆ f ◆2P�
=

n⌅

j=1

⇥j < Pfj , Pfj >, (1)

which is used to determine smooth solutions accord-
ing to the parsimony principle. This is a general-
ization to multi-task learning of what has been pro-
posed in ((Poggio & Girosi, 1989)) for regulariza-
tion networks. The more general perspective sug-
gests considering objects as entities picked up in
X p,⇧ =

⇤
i�p

⇤
|�i|�pi X�1,i ⇤ X�2,i , . . . ,X�i,i where

�i = {�1,i, . . . ,�i,i}  P(p, i) is any of the pi =
p(p � 1) . . . (p � i + 1) (falling factorial power of p)
i-length sequences without repetition of p elements.
In this paper, however, we restrict the analysis to the
case in which the objects are simply points of a vector
space. We propose to build an interaction amongst dif-
ferent tasks by introducing constraints of the following
types 1

⌦x  X : ⇧i(x, y(x), f(x)) = 0, i = INm

where y(x)  IR is a target function, which is typically
defined only on samples of the probability distribution.
This makes it possible to include the classic supervised
learning, since pairs of labelled examples turns out to
be constraints given on a finite set of points. Notice
that one can always reduce a collection of constraints
to a single equivalent constraint. For this reason, in the
reminder of the paper, most of the analysis will focus
on single constraints. In some cases the constraints can
be profitably relaxed and the index to be minimized
becomes

R(f) = ◆ f ◆2P�
+C · 1⇥ < �(x, y(x), f(x)) > . (2)

1We restrict the analysis to universally-quantified con-
straints, but a related analysis can be carried out when
involving existential quantifiers.

Function � penalizes how we depart from the perfect
fulfillment of the constraint ⇧. If ⇧(x, y(x), f(x)) ⌅
0 then we can simply set �(x, y(x), f(x) :=
⇧(x, y(x), f(x)), but in general we need to set the
penalty properly. For example, the check of a
bilateral constraint can be carried out by posing
�(x, y(x), f(x) := ⇧2(x, y(x), f(x)).

Of course, di⇥erent constraints can represent the same
admissible functional space F⇤. For example, u-
constraints ⇧̌1(f, y) = ⇤ � |y � f | ⌅ 0 and ⇧̌2(f, y) =
⇤2� (y� f)2 ⌅ 0 where f is a real function, define the
same F⇤. This motivates the following definition.

Definition 2.1 Let F⇤1 ,F⇤2 be the admissible spaces
of ⇧1 and ⇧2, respectively. Then we define the relation
⇧1 ⇧ ⇧2 if and only if F⇤1 = F⇤2 .

This notion can be extended directly to pairs of col-
lection of constraints, that is C1 ⇧ C2 whenever there
exists a bijection C1

⇥⌥ C2 such that ⌦⇧1  C1 ⌅(⇧1) ⇧
⇧1. Of course, ⇧ is an equivalent relation. We can
immediately see that ⇧1 ⇧ ⇧2 � ⌦f  F : ↵P1,2(f) :
⇧1(f) = P1,2(f) · ⇧2(f). Notice that if we denote by
[⇧] a generic representative of ⇧, than the quotient set
F⇤/ ⇧ can be constructed by

F⇤/ ⇧= {⇧  F⇤ : ⇧ = P (f) · [⇧](f)} ,

being P any positive real function. Of course we
can generate infinite constraints equivalent to [⇧].
For example, if [⇧(f, y) = ⇤ � |y � f |], the choice
P (f) = 1 + f2 gives rise to the equivalent constraint
⇧(f, y) = (1 + f2) · (⇤ � |y � f |). The quotient set of
any single constraint ⇧i suggests the presence of a logic
structure, which makes it possible to devise reasoning
mechanisms with the representative of the relation ⇧.
Moreover, the following notion of entailment naturally
arises:

Definition 2.2 Let F⇤ =
�
f  F : ⇧(f) ⌅ 0

⇥
. A

constraint ⇧ is entailed by C = {⇧i, i  INm}, that is
C |= ⇧, if FC ⌃ F⇤.

Of course, for any constraint ⇧ that can be formally
deduced from the collection C (premises), we have
C |= ⇧. It is easy to see that the entailment operator
states invariant conditions in the class of equivalent
constraints, that is if C ⇧ C⇥, C |= ⇧, and ⇧ ⇧ ⇧⇥

then C⇥ |= ⇧⇥. The entailment operator also meets the
classic chain rule, that is if C1 |= C2 and C2 |= C3 then
C1 |= C3.

3. SCM for constraint checking

A dramatic simplification of the problem of learning
from constraints derives from sampling the input space

Inference
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Representer Theorem
single constraint
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where ψ̃(x, f (x)) := (−ψ̌(x, f (x)))
q
+ and V (f ) :=

∫
X ψ̃(x, f (x))p(x)dx. Func-

tion ψ̃ is the loss corresponding with the constraint ψ̌(x, f (x)) ≥ 0. Notice that
since the argument f in this constraint takes on vectorial values, we need to define
precisely the norm ⟨Pf, Pf ⟩.The parsimony

index is
accumulated over

the tasks.

We follow the same principles behind kernel machines,
so as we define

∥f ∥2= ⟨Pf, Pf ⟩ =
n∑

i=1

⟨Pfi, Pfi⟩, (6.1.31)

which accumulates the norm of the single functions, thus disregarding dependencies
amongst tasks. This is a reasonable parsimony criterion which relies on the principle
that smoothness is guaranteed by the single terms ⟨Pfi, Pfi⟩, while the dependencies
amongst the tasks are expressed by the constraints. The application of the parsimony
principle for learning under the unilateral holonomic constraint ψ̌(x, f (x)) ≥ 0 is
then converted into the problem of finding f ⋆ = arg minf ∈F E(f ). We parallel the
variational analysis of Section 4.4, so as we consider the variation fj ! fj + ϵhj .
Of course, this time we need to consider the variations with respect to each single
task. Again, we choose ϵ > 0, while the variation h still needs to satisfy the boundary
condition stated by Eq. (4.4.99) that are put forward in Section 4.4. For the parsimony
term we have

δj ⟨Pf, Pf ⟩ = 2ϵ⟨Lfj , hj ⟩. (6.1.32)

Now for the penalty term we have

δjV (x, f (x)) =
∫

X

ψ̃(x, f (x) + ϵejhj (x))p(x)dx −
∫

X

ψ̃(x, f (x))p(x)dx

= ϵ

∫

X

p(x)hj (x)∂fj ψ̃(x, f (x))dx = ϵ ⟨p ∂fj ψ̃, h⟩,

(6.1.33)

where ej ∈ Rn is defined by ej,i := δi,j . Hence, δjE(f ) = 0 yields

⟨µLf ⋆
j + p ∂fj ψ̃, hj ⟩ = 0. (6.1.34)

Finally, from the fundamental lemma of variational calculus we get

Lf ⋆ + p

µ
∇f ψ̃ = 0. (6.1.35)

Here, we overload symbol L to denote the same operation over all fj .f ⋆ is the
convolution with

constraint reaction
ω

ψ̃
.

Now if g is the
Green function of L then

f ⋆ = g ∗ ωψ̃ , (6.1.36)

ωψ̃ (x) = − 1
µ

p(x)∇f ψ̃(x, f ⋆(x)). (6.1.37)
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leads to state that the Fourier transform of the solution is

f̂ ⋆(ξ) = ĝ(ξ) · ω̂ψ̃ (ξ). (6.1.40)

This provides a traditional filtering interpretation: The Green function acts as a filter
on the spectrum of the constraint reaction. When abandoning pointwise constraints,
things are more involved. Eq. (6.1.36) does in fact involve the unknown f ⋆ on both
sides, since ∀x ∈ X the reaction is ωψ̃ (x, f ⋆(x)). Hence, ∀x ∈ X we need to solve
f ⋆(x) = g ∗ ωψ̃ (x), which is in general a complex functional equation. An in-depth
discussion on this functional structure and on corresponding algorithmic solution is
given in Section 6.4.

Bilateral holonomic
soft-constraints

turn out to be
equivalent to
isoperimetric

constraints.

What happens for other constraints? Interestingly, the representational structure
of Eq. (6.1.36) still holds true. While the technical analysis requires facing some is-
sues, the basic idea is still the same, and leads to blessing the solution based on the
convolution of the Green function of L with the constraint reaction. Again, the Green
function is simply the outcome of the parsimony principle; it is in fact the technical
interpretation of the smoothness condition arising from the choice of differential op-
erator P . The reaction is dependent on the structure of the corresponding constraint.
If we still consider soft-enforcement, the same holonomic problem considered so far
in case of bilateral constraint, namely ψ(x, f (x)) = 0, can be approached by the
same analysis. Here the only difference concerns the way the constraint is mapped to
a corresponding penalty function. For example, if we choose

V (f ) =
∫

X

|ψ(x, f (x))|p p(x)dx,

then we end up with the same conclusions concerning the representation of the op-
timal solution f ⋆. Clearly, the same holds true for isoperimetric problems, where a
single constraint corresponds with the global satisfaction of an associated holonomic
constraint.

Hard constraints. When the constraints must be hard-enforced we cannot rely on the same idea of
an associated penalty. We can think at most of a family of approximating problems
where the penalty comes with an increasing weight. Let’s assume that the bilateral
holonomic constraint ψ(x, f (x)) = 0 must be hard satisfied over the perceptual
space X . The Lagrangian in this case is

L = ⟨Pf, Pf ⟩ +
∫

X

λ(x)ψ(x, f (x))dx. (6.1.41)

Virtually infinite
constraints: λ(x) is

the multiplier on
x ∈ X .

Intuitively, this corresponds with imposing the satisfaction over an infinite number of
constraints ∀x : ψ(x, f (x)) = 0. We have a corresponding Lagrangian multiplier
λ(x) for each point x ∈ X on which the constraints are enforced. We can promptly
see that Eq. (6.1.41) has exactly the same mathematical structure as Eq. (6.1.30). As

 ̃(x, f(x)) = 0

constraint reaction

Gnecco et al (2015)
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LEARNING FROM CONSTRAINTS: FOUNDATIONS

Theorem 13 REPRESENTER THEOREM FOR u-CONSTRAINTS
Let us consider the problem formulated by Definition 5 with the m universally quantified bilateral
constraints of holonomic type10

⌦x � Xi ⇧ X : ⌃i(x, f(x), y(x)) = 0, i � INm (20)

P(⌥) =
m⌅

i=1

⌥i.

Let us assume that ⌦x � X we can find a permutation of n functions11 such that the Jacobian is not
singular, that is

D(⌃1, . . . ,⌃m)
D(f1, . . . , fm)

 = 0. (21)

Then there exist a set of functions ⇤i = �i ⌅ f, i � INm such that any weak extreme of functional (1)
under the constraints (20) is also a weak extreme of12

L(f) =⌘ f ⌘2P,� +
m⇥

i=1

⇤

X
⇤i(x) · ⌃i(x, f(x), y(x))dx. (22)

Any extreme f satisfies the Euler-Lagrange equations

Lf(x) +
m⇥

i=1

⇤i(x) ·◆f⌃i(x, f(x), y(x)) = 0, (23)

where L := [�1L, . . . , �nL]� and ◆f is the gradient w.r.t. f . Moreover, if g is a Green function of
operator L, under given boundary conditions on ↵X , then f admits the representation

f = �g ⇤
m⇥

i=1

⇤i◆f⌃i + fP , (24)

where fP � KerP = KerL. Finally, if the constraints (20) are convex then the solutions of (23) are
global minima, and the uniqueness holds whenever KerP = {0}, which also yields fP = 0 .

Proof See the appendix.

Remark 14 BOUNDARY CONDITIONS
Notice that the Green function g exists only under appropriate boundary conditions on ↵X . For ex-
ample, if L =

�⇥
⇥=0(�1)⇥⇧2⇥/(2⇥⇥!)(↵2⇥/↵x2⇥) and we impose on the border of X = IRd that

f(x) ⌃ 0 as ⌘ x ⌘⌃ ⌥ then the Green functions is the Gaussian g(x) = 1/(
✓

2⌅⇧)exp(�x2/⇧2).
Notice that in the case L = ◆2, the linear kernels, are not consistent with the same boundary condi-
tions in X = IRd unless we take the trivial solution g = 0 when F = C⇥. When keeping the same
vanishing boundary conditions, possible non-trivial solutions can be found in the space of piecewise
linear functions. Related studies on this issue can be found in (Schoelkopf and Smola (1998); Smola
et al. (1998)), while some additional connections are established in the Appendix II.

10. These constraint may include conditions on the border ⇥X .
11. Without limitation of generality, they are numbered using the first m < n functions.
12. The choice of the sign of the second right-hand term follows the convention used in kernel machines.
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Parsimony and architectural constraints
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where ↵j � 0. Clearly, once we determine w?, the corresponding x? is
determinded from the neural constraint. The error function v(xi, yi) +P

j2H ↵j |xj |, which is accumulated all over the patters, is minimized under

the neural architectural constraints. Here, v : R⇥R ! R

+ is a loss function,
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L = 0 then we recognize in Eq. (3) and Eq. (4)
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Gradient descent/ascent

saddle points of the Lagrangian
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saddle points of the Lagrangian
Lagrangian multipliers, straw and support neurons! 

A more biologically plausibile solution than Backpropagation

learning (gradient descent) 

focus of attention (gradient ascent)
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Semi-supervised Learning

8 G. Marra et al.

(a) (b)

(c) (d)

Fig. 2: Semi-Supervised Learning: (a) data that is provided with a positive and
negative supervision for class A; (b) the unsupervised data provided to the learner;
(c) class assignments using only the supervised examples; (d) class assignments
using learning from examples and constraints in CLARE.

Predicate("A", ("Points"), function=NN_A)

# Fit the supervisions

PointwiseConstraint(A, y_s, X_s)

Let’s now assume that we want to express manifold regularization for the
learned function: this states that points that are close should be similarly classified.
This extension can be expressed in CLARE adding the following lines:

# Given predicate stating whether two patterns are "close"

Predicate("Close", ("Points","Points"), function=f_close)

# The constraint implementing manifold regularization.

Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")

where f close is a given function determining if two patterns are close. The
training is then re-executed starting from the same initial conditions as in the
supervised-only case.

CLARE: a General Interface Layer to Integrate AI and Deep Learning 7

In order to satisfy all the logical constraints, we minimize the following term,

L

c

(X ,f ,p) =
TX

j=1

�

j

(1� �

j

(X
j

,f ,p)) ,

where X denotes the overall samples where the functions and predicates are eval-
uated and �

j

is a weight for the j-th logical constraint. However, CLARE allows
to integrate classical supervised learning (by means of PointwiseConstraints) and
learning from constraints modeling the prior knowledge. Therefore in general,
the cost function that is optimized by CLARE is composed by three terms, one
forcing the fitting of the supervised examples, one for regularization and the
latter for the logical constraint satisfaction. We have:

�

s

h
L

s

(f ,X f
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where X f

s

,X p

s

denote the supervised data for functions and predicates respectively,
||f || and ||p|| measure the complexity of the approximators, L

s

is a loss function
and �

r

,�

c

and �

s

indicate the weights in the optimization of the supervision,
regularization and constraint terms, respectively.

3 Learning and Reasoning with CLARE

This section presents a list of examples illustrating the range of learning tasks that
can be expressed in the proposed framework. In particular, it is shown how it is
possible to force label coherence in semi-supervised or transductive learning tasks,
how to implement collective classification over the test set, rule deduction from
the learned predicates as in classical Inductive logic programming (ILP), pure
logical reasoning and how to address generative tasks or pattern completion in the
case of missing features. The software of both the framework and the experiments
is made available at https://github.com/GiuseppeMarra/CLAREecml

Semi-Supervised Learning. In this task we assume to have available a set of
420 points distributed along an outer and inner circles. The inner and outer
points belong and do not belong to some given class A, respectively. A random
selection of 20 points is supervised (either positively or negatively), as shown in
Figure 2(a). The remaining points are split into 200 unsupervised training point,
shown in Figure 2(b) and 200 points left as test set. A neural network is assumed
to have been created in TF to approximate the predicate A.

The network can be trained by making it fit the supervised data. So, given
the vector of data X, a neural network NN A and the vector of supervised data X s,
with the vector of associated labels y s, the supervised training of the network
can be expressed in CLARE by the following code:

# Definition of the domain of the data points.

Domain(label="Points", data=X)

# Approximating the predicate A via a NN.

8 G. Marra et al.

(a) (b)

(c) (d)

Fig. 2: Semi-Supervised Learning: (a) data that is provided with a positive and
negative supervision for class A; (b) the unsupervised data provided to the learner;
(c) class assignments using only the supervised examples; (d) class assignments
using learning from examples and constraints in CLARE.

Predicate("A", ("Points"), function=NN_A)

# Fit the supervisions

PointwiseConstraint(A, y_s, X_s)

Let’s now assume that we want to express manifold regularization for the
learned function: this states that points that are close should be similarly classified.
This extension can be expressed in CLARE adding the following lines:

# Given predicate stating whether two patterns are "close"

Predicate("Close", ("Points","Points"), function=f_close)

# The constraint implementing manifold regularization.

Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")

where f close is a given function determining if two patterns are close. The
training is then re-executed starting from the same initial conditions as in the
supervised-only case.

given predicate
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(a) (b)

(c) (d)

Fig. 2: Semi-Supervised Learning: (a) data that is provided with a positive and
negative supervision for class A; (b) the unsupervised data provided to the learner;
(c) class assignments using only the supervised examples; (d) class assignments
using learning from examples and constraints in CLARE.

Predicate("A", ("Points"), function=NN_A)

# Fit the supervisions

PointwiseConstraint(A, y_s, X_s)

Let’s now assume that we want to express manifold regularization for the
learned function: this states that points that are close should be similarly classified.
This extension can be expressed in CLARE adding the following lines:

# Given predicate stating whether two patterns are "close"

Predicate("Close", ("Points","Points"), function=f_close)

# The constraint implementing manifold regularization.

Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")

where f close is a given function determining if two patterns are close. The
training is then re-executed starting from the same initial conditions as in the
supervised-only case.

effect of close
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
a1(x) ⌅ a2(x) ⌅ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ⇤ a2(x) � a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ⇤ a3(x) � a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ⇤ a3(x) � a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ⇤ a2(x) � ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ⇤ ¬a2(x) � a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ⇤ ¬a3(x) � a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.

References

Giaquinta, M. and Hildebrand, S. Calculus of Varia-
tions I, volume 1. Springer, 1996.

Klement, E.P., Mesiar, R., and Pap, E. Triangular
Norms. Kluwer Academic Publisher, 2000.

Poggio, Tomaso and Girosi, Federico. A theory of net-
works for approximation and learning. Technical re-
port, MIT, 1989.

Raedt, L. De, Frasconi, P., Kersting, K., and (Eds),
S.H. Muggleton. Probabilistic Inductive Logic Pro-
gramming, volume 4911. Springer, Lecture Notes in
Artificial Intelligence, 2008.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Support Constraint Machines

Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
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indicates the fraction of the data on which the clause holds true.
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trained with � = 40. Even if it is simple to devise
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possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
a1(x) ⌅ a2(x) ⌅ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ⇤ a2(x) � a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ⇤ a3(x) � a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ⇤ a3(x) � a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.

References

Giaquinta, M. and Hildebrand, S. Calculus of Varia-
tions I, volume 1. Springer, 1996.

Klement, E.P., Mesiar, R., and Pap, E. Triangular
Norms. Kluwer Academic Publisher, 2000.

Poggio, Tomaso and Girosi, Federico. A theory of net-
works for approximation and learning. Technical re-
port, MIT, 1989.

Raedt, L. De, Frasconi, P., Kersting, K., and (Eds),
S.H. Muggleton. Probabilistic Inductive Logic Pro-
gramming, volume 4911. Springer, Lecture Notes in
Artificial Intelligence, 2008.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Support Constraint Machines

Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
a1(x) ⌅ a2(x) ⌅ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ⇤ a2(x) � a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ⇤ a3(x) � a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
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a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.

References

Giaquinta, M. and Hildebrand, S. Calculus of Varia-
tions I, volume 1. Springer, 1996.

Klement, E.P., Mesiar, R., and Pap, E. Triangular
Norms. Kluwer Academic Publisher, 2000.

Poggio, Tomaso and Girosi, Federico. A theory of net-
works for approximation and learning. Technical re-
port, MIT, 1989.

Raedt, L. De, Frasconi, P., Kersting, K., and (Eds),
S.H. Muggleton. Probabilistic Inductive Logic Pro-
gramming, volume 4911. Springer, Lecture Notes in
Artificial Intelligence, 2008.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Support Constraint Machines

Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.
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a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ⇤ a2(x) � ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ⇤ ¬a2(x) � a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ⇤ ¬a3(x) � a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Support Constraint Machines

beyond formal logic, since it takes place on a wider
notion of environments in which logic clauses and su-
pervised examples complement each other.

2. Learning from constraints

We think of an intelligent agent acting in the per-
ceptual space X ⌃ IRd as a vectorial f unction f =
[f1, . . . , fn]⇥, where ⌦j  INn : fj  W k,p belongs to
a Sobolev space, that is to the subset of Lp whose func-
tions fj admit weak derivatives up to some order k and
have a finite Lp norm. The functions fj : j = 1, . . . , n,
are referred to as the “tasks” of the agent. We can in-
troduce a norm on f by the pair (P, ⇥), where P is a
pseudo-di⇥erential operator and ⇥  IRn is a vector of
non-negative coordinates

R(f) = ◆ f ◆2P�
=

n⌅

j=1

⇥j < Pfj , Pfj >, (1)

which is used to determine smooth solutions accord-
ing to the parsimony principle. This is a general-
ization to multi-task learning of what has been pro-
posed in ((Poggio & Girosi, 1989)) for regulariza-
tion networks. The more general perspective sug-
gests considering objects as entities picked up in
X p,⇧ =

⇤
i�p

⇤
|�i|�pi X�1,i ⇤ X�2,i , . . . ,X�i,i where

�i = {�1,i, . . . ,�i,i}  P(p, i) is any of the pi =
p(p � 1) . . . (p � i + 1) (falling factorial power of p)
i-length sequences without repetition of p elements.
In this paper, however, we restrict the analysis to the
case in which the objects are simply points of a vector
space. We propose to build an interaction amongst dif-
ferent tasks by introducing constraints of the following
types 1

⌦x  X : ⇧i(x, y(x), f(x)) = 0, i = INm

where y(x)  IR is a target function, which is typically
defined only on samples of the probability distribution.
This makes it possible to include the classic supervised
learning, since pairs of labelled examples turns out to
be constraints given on a finite set of points. Notice
that one can always reduce a collection of constraints
to a single equivalent constraint. For this reason, in the
reminder of the paper, most of the analysis will focus
on single constraints. In some cases the constraints can
be profitably relaxed and the index to be minimized
becomes

R(f) = ◆ f ◆2P�
+C · 1⇥ < �(x, y(x), f(x)) > . (2)

1We restrict the analysis to universally-quantified con-
straints, but a related analysis can be carried out when
involving existential quantifiers.

Function � penalizes how we depart from the perfect
fulfillment of the constraint ⇧. If ⇧(x, y(x), f(x)) ⌅
0 then we can simply set �(x, y(x), f(x) :=
⇧(x, y(x), f(x)), but in general we need to set the
penalty properly. For example, the check of a
bilateral constraint can be carried out by posing
�(x, y(x), f(x) := ⇧2(x, y(x), f(x)).

Of course, di⇥erent constraints can represent the same
admissible functional space F⇤. For example, u-
constraints ⇧̌1(f, y) = ⇤ � |y � f | ⌅ 0 and ⇧̌2(f, y) =
⇤2� (y� f)2 ⌅ 0 where f is a real function, define the
same F⇤. This motivates the following definition.

Definition 2.1 Let F⇤1 ,F⇤2 be the admissible spaces
of ⇧1 and ⇧2, respectively. Then we define the relation
⇧1 ⇧ ⇧2 if and only if F⇤1 = F⇤2 .

This notion can be extended directly to pairs of col-
lection of constraints, that is C1 ⇧ C2 whenever there
exists a bijection C1

⇥⌥ C2 such that ⌦⇧1  C1 ⌅(⇧1) ⇧
⇧1. Of course, ⇧ is an equivalent relation. We can
immediately see that ⇧1 ⇧ ⇧2 � ⌦f  F : ↵P1,2(f) :
⇧1(f) = P1,2(f) · ⇧2(f). Notice that if we denote by
[⇧] a generic representative of ⇧, than the quotient set
F⇤/ ⇧ can be constructed by

F⇤/ ⇧= {⇧  F⇤ : ⇧ = P (f) · [⇧](f)} ,

being P any positive real function. Of course we
can generate infinite constraints equivalent to [⇧].
For example, if [⇧(f, y) = ⇤ � |y � f |], the choice
P (f) = 1 + f2 gives rise to the equivalent constraint
⇧(f, y) = (1 + f2) · (⇤ � |y � f |). The quotient set of
any single constraint ⇧i suggests the presence of a logic
structure, which makes it possible to devise reasoning
mechanisms with the representative of the relation ⇧.
Moreover, the following notion of entailment naturally
arises:

Definition 2.2 Let F⇤ =
�
f  F : ⇧(f) ⌅ 0

⇥
. A

constraint ⇧ is entailed by C = {⇧i, i  INm}, that is
C |= ⇧, if FC ⌃ F⇤.

Of course, for any constraint ⇧ that can be formally
deduced from the collection C (premises), we have
C |= ⇧. It is easy to see that the entailment operator
states invariant conditions in the class of equivalent
constraints, that is if C ⇧ C⇥, C |= ⇧, and ⇧ ⇧ ⇧⇥

then C⇥ |= ⇧⇥. The entailment operator also meets the
classic chain rule, that is if C1 |= C2 and C2 |= C3 then
C1 |= C3.

3. SCM for constraint checking

A dramatic simplification of the problem of learning
from constraints derives from sampling the input space

Bridging Perception and Logic
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Figure 2. Top row: the 4 classes in the data collection where a set of FOL constraints applies. The green dashed lines
shows the real boundaries of the classes. Middle row: the functions f1, f2, f3, f4 in SCMs that use labeled examples only,
SCLL. Bottom row: the functions f1, f2, f3, f4 in SCMs with FOL clauses, SCMFOL.

8 16 24 40 80 160 320
30

40

50

60

70

80

90

100

Labeled Training Points

%
 A

cc
ur

ac
y

 

 

SCM (Examples Only)
SCM (Examples + FOL clauses)
SCM (Examples Only + Post Proc.)

Figure 3. The average accuracy (and standard deviation)
of the SCM classifier: using labeled examples only (SCLL),
using examples and FOL clauses (SCMFOL), using exam-
ples only and post processing the classifier output with the
FOL rules.

Given the original set of rules that constitutes our
Knowledge Base (KB) and that are fed to the clas-
sifier, we distinguish between two categories of logic
rules that can be deducted from the trained SCMFOL.
The first category includes the clauses that are related
to the geometry of the data distribution, and that, in
other words, are strictly connected to the topology of
the environment in which the agent operates, as the
ones of Eq. 9-11. The second category contains the
rules that can be logically deducted by analyzing the
FOL clauses that are available at hand. The classifier
should be able to learn both the categories of rules
even if not explicitly added to the knowledge base.

The mixed interaction of the labeled points and the
FOL clauses of the KB leads to an SCM agent that
can check whether a new clause holds true in our en-
vironment. Note that the checking process is not im-
plemented with a strict decision on the truth value of

Checking (logic) constraints 
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Figure 2. Top row: the 4 classes in the data collection where a set of FOL constraints applies. The green dashed lines
shows the real boundaries of the classes. Middle row: the functions f1, f2, f3, f4 in SCMs that use labeled examples only,
SCLL. Bottom row: the functions f1, f2, f3, f4 in SCMs with FOL clauses, SCMFOL.
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Figure 3. The average accuracy (and standard deviation)
of the SCM classifier: using labeled examples only (SCLL),
using examples and FOL clauses (SCMFOL), using exam-
ples only and post processing the classifier output with the
FOL rules.

Given the original set of rules that constitutes our
Knowledge Base (KB) and that are fed to the clas-
sifier, we distinguish between two categories of logic
rules that can be deducted from the trained SCMFOL.
The first category includes the clauses that are related
to the geometry of the data distribution, and that, in
other words, are strictly connected to the topology of
the environment in which the agent operates, as the
ones of Eq. 9-11. The second category contains the
rules that can be logically deducted by analyzing the
FOL clauses that are available at hand. The classifier
should be able to learn both the categories of rules
even if not explicitly added to the knowledge base.

The mixed interaction of the labeled points and the
FOL clauses of the KB leads to an SCM agent that
can check whether a new clause holds true in our en-
vironment. Note that the checking process is not im-
plemented with a strict decision on the truth value of
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Figure 3: The classification functions f1, f2(x) are plotted on the two rows, respectively. For each row,
the left picture shows the classification function of an SCM that uses labeled examples only, whereas the
right picture depicts the output of an SCM that uses also the FOL clauses. The grid dashed lines are the
real boundaries of the class. SCM with FOL clauses produces an output that is significantly closer to the
real class structure.

15

points only points and “logic rules”



ILP 2018

points only points and “logic rules”
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

x1

x 2

 

 

0

0.2

0.4

0.6

0.8

1

f1(x)
Sample
Label (1)
Label (0)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

x1

x 2

 

 

0

0.2

0.4

0.6

0.8

1

f1(x)
Sample
Label (1)
Label (0)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

x1

x 2

 

 

0

0.2

0.4

0.6

0.8

1

f2(x)
Sample
Label (1)
Label (0)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

x1

x 2

 

 

0

0.2

0.4

0.6

0.8

1

f2(x)
Sample
Label (1)
Label (0)

Figure 3: The classification functions f1, f2(x) are plotted on the two rows, respectively. For each row,
the left picture shows the classification function of an SCM that uses labeled examples only, whereas the
right picture depicts the output of an SCM that uses also the FOL clauses. The grid dashed lines are the
real boundaries of the class. SCM with FOL clauses produces an output that is significantly closer to the
real class structure.
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Figure 4: The classification functions f3(x), f4 are plotted on the two rows, respectively. For each row,
the left picture shows the classification function of an SCM that uses labeled examples only, whereas the
right picture depicts the output of an SCM that uses also the FOL clauses. The grid dashed lines are the
real boundaries of the class. SCM with FOL clauses produces an output that is significantly closer to the
real class structure.
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Figure 4: The classification functions f3(x), f4 are plotted on the two rows, respectively. For each row,
the left picture shows the classification function of an SCM that uses labeled examples only, whereas the
right picture depicts the output of an SCM that uses also the FOL clauses. The grid dashed lines are the
real boundaries of the class. SCM with FOL clauses produces an output that is significantly closer to the
real class structure.
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Support Constraint Machines

Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
a1(x) ⌅ a2(x) ⌅ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ⇤ a2(x) � a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ⇤ a3(x) � a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ⇤ a3(x) � a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ⇤ a2(x) � ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ⇤ ¬a2(x) � a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ⇤ ¬a3(x) � a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.
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a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
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a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
a1(x) ⌅ a2(x) ⌅ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ⇤ a2(x) � a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ⇤ a3(x) � a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ⇤ a3(x) � a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
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a1(x) ⇤ ¬a2(x) � a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
a1(x) ⌅ a2(x) ⌅ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ⇤ a2(x) � a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ⇤ a3(x) � a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ⇤ a3(x) � a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
a1(x) ⇤ a2(x) � ¬a4(x) ENV 0% 0.26 (0.06) 3.51% (3.76)
a1(x) ⇤ ¬a2(x) � a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ⇤ ¬a3(x) � a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
a1(x) ⇤ a2(x) � a3(x) KB 100% 0.0011 (0.00005) 98.26% (1.778)

a3(x) � a4(x) KB 100% 0.0046 (0.0014) 98.11% (2.11)
a1(x) ⌅ a2(x) ⌅ a3(x) KB 100% 0.0049 (0.002) 96.2% (3.34)

a1(x) ⇤ a2(x) � a4(x) LD 100% 0.0025 (0.0015) 96.48% (3.76)
a1(x) ⇤ a3(x) � a2(x) ENV 100% 0.017 (0.0036) 91.32% (5.67)
a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ⇤ a3(x) � a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
a2(x) ⌅ a3(x) ENV 80% 3.39 (0.088) 78.26% (6.13)

a1(x) ⌅ a2(x) � a3(x) ENV 65% 0.441 (0.0373) 68.28% (5.86)
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a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.

6. Conclusions

This paper gives insights on how to fill the gap be-
tween kernel machines and models rooted in logic and

probability, whenever one needs to express relations
and express constraints amongst di�erent entities. The
support constraint machines (SCMs), are introduced
that makes it possible to deal with learning functions
in a multi-task environment and to check constraints.
In addition to the impact in multi-task problems, the
experimental results provide evidence of novel infer-
ence mechanisms that nicely bridge formal logic rea-
soning with supervised data. It is shown that logic
deductions that do not hold formally can be fired by
samples of labelled data. Basically SCMs provide a
natural mechanism under which logic and data com-
plement each other. Interestingly, the analysis on the
equivalence of constraint o�ers the link with logic de-
scriptions and suggest future studies in which a logic
engine performing automated reasoning exchange con-
straints with SCMs.
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Table 3. Mean Absolute Error (MAE) of the t-norm based constraints and the percentage of points for which a clause
is marked true by the SCM (Average Truth Value), and their standard deviations (in brackets). Logic rules belong to
di�erent categories (Knowledge Base - KB, Environment - ENV, Logic Deduction - LD). The percentage of Support
indicates the fraction of the data on which the clause holds true.

FOL clause Category Support MAE Average Truth Value
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a3(x) ⇤ a2(x) � a1(x) ENV 100% 0.024 (0.014) 91.7% (4.57)
a2(x) ⇤ a3(x) � a4(x) LD 100% 0.0025 (0.0011) 96.58% (4.13)

a3(x) � a1(x) ⌅ a2(x) ⌅ a4(x) LD 100% 0.00001 (0.00008) 99.7% (0.54)
a1(x) ⇤ a4(x) ENV 46% 0.41 (0.042) 45.26% (5.2)
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a1(x) ⇤ ¬a2(x) � a3(x) ENV 0% 0.063 (0.026) 27.74% (18.96)
a2(x) ⇤ ¬a3(x) � a1(x) ENV 0% 0.073 (0.014) 5.71% (5.76)

a logic sentence (holds true or false), since there are
some rules that are verified only on some (possibly
large) regions of the input space, so that we have to
evaluate the truth degree of a FOL clause. If it is over
a reasonably high threshold, the FOL sentence can be
assumed to hold true.

In Table 3 we report the degree of satisfaction of dif-
ferent FOL clauses and the MAE on the correspond-
ing t-norm-based constraints. We used the SCMFOL

trained with � = 40. Even if it is simple to devise
them when looking at the data distribution, it is not
possible to do this as the input space dimension in-
creases, so that we can only “ask” the trained SCM is
a FOL clause holds true. This allow us to rebuild the
hierarchical structure of the data, if any, and to ex-
tract compact information from the problem at hand.
The rules belonging to the KB are accurately learned
by the SCMFOL, as expected. The SCMFOL is also
able to deduct all the other rules that are supported
in the entire data collection. The ones that do not
hold for all the data points have the same truth de-
gree as the percentage of points for which they should
hold true, whereas rules that do not apply to the given
problem are correctly marked with a significantly low
truth value. We can appreciate how the classifier has
learned the logically deductible rules as well as the
ones that come from the environment configuration.
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Example 4.14 Parental Inference

While LIRICO is mainly designed for integrating logic and deep learning, it is also
possible to use it as a tool for pure logical reasoning. This case is illustrated by the
following example, where a few individuals are added to the domain People without
any underlying data representation. This can be defined in the LIRICO environment
as:

Domain(label="People")
Individual(label="Marco", "People")
Individual(label="Giuseppe", "People")
Individual(label="Michelangelo", "People")
Individual(label="Francesco", "People")
Individual(label="Franco", "People")
Individual(label="Andrea", "People")

The individuals are assumed to be related via parental relations defined by the follow-
ing predicates:

Predicate(label="fatherOf", ("People", "People"))
Predicate(label="grandFatherOf", ("People", "People"))
Predicate(label="eq", ("People", "People"), function=eq)

where the given binary predicate eq holds true iff the two input individuals are the
same person.

Finally, some known relations are known between the individuals:

Constraint("fatherOf(Marco, Giuseppe)")
Constraint("fatherOf(Giuseppe, Michelangelo)")
Constraint("fatherOf(Giuseppe, Francesco)")
Constraint("fatherOf(Franco, Andrea)")

The prior knowledge provided for this task expresses some well-known semantics
about parental constraints. For example, LIRICO allows to express that nobody can
be father or grandfather of himself as:

Constraint("forall x: not fatherOf(x,x)")
Constraint("forall x: not grandFatherOf(x,x)")

Another two rules state that fathership is an asymmetric relation, so that if you
are father or grandfather of someone, he can not be your father or grandfather. Fur-
thermore, someone can not be father and grandfather of someone at the same time,
these are expressed in LIRICO as:

Constraint("forall x: forall y: fatherOf(x,y) -> not fatherOf(y,x)")
Constraint("forall x: forall y: grandFatherOf(x,y)
-> not grandFatherOf(y,x)")
Constraint("forall x: forall y: fatherOf(x,y) -> not grandFatherOf(x,y)")
Constraint("forall x: forall y: grandFatherOf(x,y) -> not fatherOf(x,y)")

Another rule expresses that the father of the father is a grandfather, and that one
person has at most one father in the considered world:
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Constraint("forall x: forall y: forall z: fatherOf(x,z) and fatherOf(z,y) ->
grandFatherOf(x,y)")

Constraint("forall x: forall y: forall z: (fatherOf(x,y) and not eq(x,z)) ->
not fatherOf(z,y)")

The learning task seeks to infer the unknown relations among the individuals. Af-
ter starting the learning phase, LIRICO outputs the predicate values for all the ground-
ings, and it correctly concludes that the following facts hold true: grandFatherOf("Marco",
"Michelangelo"), ¬grandFatherOf("Marco", "Giuseppe"), grandFatherOf("Marco", "Francesco"),
etc. On the other hand nothing can be concluded regarding who is the grandfather of
“Franco” and “Andrea”, so leaving these values to be equal to their prior values.

One the training has been performed and the grounded predicates have been com-
puted, LIRICO provides an easy interface for performing model checking also in this
symbolic environment. For example, let’s suppose that we want to check whether the
following rule holds true according to the computed assignments:

Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and
fatherOf(y,z) -> fatherOf(x,y)")

As expected, the evaluation of the rule performed by returns that the rules is perfectly
verified by the computed assignments.

Example 4.15 Consider Winston’s animal recognition example- typically used to
illustrate Prolog.

Challenges

1. Discuss different t-norms

2. Address the issue of local minima by isolating logic fragments that yield
local minima free optimization.

4.5 Inference in the environment
Description: Given a collection of logic constraints and a set of data on which to
ground them, determine the truth of unary predicates acting on the features of
a new individual. Inference in the environment is also regarded as the process of
verifying whether a given argument is valid when grounded on a certain data set.

Example 4.16 Old boxes example from supervised, unsupervised learning

Example 4.17 Same example used for formal inference where individuals are given
a profile characterized by two features.

Example 4.18 Learning of Spatial Relations among Rectangles

Description: In this example, we are interested in describing the mutual positions of a
set of 2d rectangles on a plane by means of some spatial relations. For instance, given
two rectangles x and y, we can say that x is on the left of y, and we take into account
the relations right, below, above, inside and contains as well. For this task, we assume

28
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Fig. 4: An example of the trained generative functions, The middle and right
pictures shown the outputs of the functions next and previous functions fed
with the image on the left, respectively.

The learning task seeks to infer the unknown relations among the individuals.
After starting the learning phase, CLARE outputs the predicate values for
all the groundings, and it correctly concludes that the following facts hold
true: grandFatherOf("Marco", "Michelangelo"), ¬grandFatherOf("Marco",
"Giuseppe"), grandFatherOf("Marco", "Francesco"), etc. On the other hand
nothing can be concluded regarding who is the grandfather of “Franco” and
“Andrea”, so leaving these values to be equal to their prior values.

One the training has been performed and the grounded predicates have been
computed, CLARE provides an easy interface for performing model checking also
in this symbolic environment. For example, let’s suppose that we want to check
whether the following rule holds true according to the computed assignments:

Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and

fatherOf(y,z) -> fatherOf(x,y)")

As expected, the evaluation of the rule performed by returns that the rules is
perfectly verified by the computed assignments.

Pattern Generation. In this task, we exploit a set of around 15000 images
of handwritten digits, obtained extracting only the 0, 1 and 2 digits from the
MNIST dataset. We want to solve both a classification task, aiming at identifying
which digit an image represents, and a generation task, learning some generative
functions producing images from images. In particular, we want to learn two
generative functions, next and previous, which, given an image of a digit, will
produce an image of the next and previous digit, respectively. In order to give
each digit a next and a previous digit in the chosen set, we used a circular
mapping such that 0 is the next digit of 2 and 2 is the previous digit of 0.

This generative task can be solved in two steps: first, we learn the classifier
in a purely supervised fashion, then the image generator is trained in a purely
unsupervised fashion by simply exploiting the knowledge of the relations among
classes and the inverse nature of the next and previous operators.
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How does it work?

(Marco, Giuseppe)

. . .

(Marco, Francesco)

father grandfathergrounded pair

wgf (Mar, Fra)wf (Mar, Fra)

wf (Mar,Giu) wgf (Mar,Giu)

wf (Mar,Giu) = 1 wf (Giu,Mic) = 1 wf (Giu, Fra) = 1 wf (Fra,And) = 1
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How does it work?

wf (Mar,Giu) = 1 wf (Giu,Mic) = 1 wf (Giu, Fra) = 1 wf (Fra,And) = 1

grandfather definition …

Constraint("forall x: forall y: forall z: fatherOf(x,z) and fatherOf(z,y) ->
grandFatherOf(x,y)")

Constraint("forall x: forall y: forall z: (fatherOf(x,y) and not eq(x,z)) ->
not fatherOf(z,y)")

The learning task seeks to infer the unknown relations among the individuals. Af-
ter starting the learning phase, LIRICO outputs the predicate values for all the ground-
ings, and it correctly concludes that the following facts hold true: grandFatherOf("Marco",
"Michelangelo"), ¬grandFatherOf("Marco", "Giuseppe"), grandFatherOf("Marco", "Francesco"),
etc. On the other hand nothing can be concluded regarding who is the grandfather of
“Franco” and “Andrea”, so leaving these values to be equal to their prior values.

One the training has been performed and the grounded predicates have been com-
puted, LIRICO provides an easy interface for performing model checking also in this
symbolic environment. For example, let’s suppose that we want to check whether the
following rule holds true according to the computed assignments:

Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and
fatherOf(y,z) -> fatherOf(x,y)")

As expected, the evaluation of the rule performed by returns that the rules is perfectly
verified by the computed assignments.

Example 4.15 Consider Winston’s animal recognition example- typically used to
illustrate Prolog.

Challenges

1. Discuss different t-norms

2. Address the issue of local minima by isolating logic fragments that yield
local minima free optimization.

4.5 Inference in the environment
Description: Given a collection of logic constraints and a set of data on which to
ground them, determine the truth of unary predicates acting on the features of
a new individual. Inference in the environment is also regarded as the process of
verifying whether a given argument is valid when grounded on a certain data set.

Example 4.16 Old boxes example from supervised, unsupervised learning

Example 4.17 Same example used for formal inference where individuals are given
a profile characterized by two features.

Example 4.18 Learning of Spatial Relations among Rectangles

Description: In this example, we are interested in describing the mutual positions of a
set of 2d rectangles on a plane by means of some spatial relations. For instance, given
two rectangles x and y, we can say that x is on the left of y, and we take into account
the relations right, below, above, inside and contains as well. For this task, we assume

28

Łukasiewicz logic 

T (x, y) = max{0, x+ y � 1}

) min{1, 1� x+ y}

X

X,Y,Z

min{1�max{wf
(X,Z) + wf

(Z, Y )� 1, 0}+ wgf
(X,Y ), 1}
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Full inference on individuals

wf (X,Y ), wgf (X,Y ) from formal logic

!

f (x, y),!gf (x, y) from neural nets

(X,x)

(age
x

, weight
x

, height
x

, age
y

, weight
y

, height
y

)

consistency constraints

Complexity issues: the inference in the environment avoids 
massive exploration of the Boolean hypercube
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?

ok

Poly Check
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Learning and inference in the environment 

left, below

-

inside/contains

Learning and inference in the world of rectangles

(p1, p2)

(q1, q2)



ILP 2018

The “world of rectangles” 

8x, y in S : below(x, y) ) SB(x, y)

8x, y in S : left(x, y) ) SL(x, y)

8x, y in S : inside(x, y) ) SI(x, y)

8x, y left(x, y) , right(y, x)

8x, y below(x, y) , above(y, x)

8x, y inside(x, y) , contains(y, x)

8x, y left(x, y) , ¬left(y, x)
8x, y below(x, y) , ¬below(y, x)

8x, y inside(x, y) , ¬inside(y, x)

8x, y left(x, y) , ¬inside(x, y)
8x, y below(x, y) , ¬inside(x, y)

x ⇠ ((p1, p2), (q1, q2))

supervision

consistency of the 
opposite

asymmetry consistency

topologic consistency
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Inference in the “world of rectangles” 

8x, y, z : inside(x, y) ^ right(y, z) ) right(x, z)

8x, y left(x,y) ) above(x, y)

8x left(x,x)

and additional logical rules involving the spatial relations,

8x, y : LEFT (x, y) $ RIGHT (y, x)
8x, y : BELOW (x, y) $ ABOV E(y, x)
8x, y : INSIDE(x, y) $ CONTAINS(y, x)
8x, y : LEFT (x, y) ! ¬LEFT (y, x)
8x, y : BELOW (x, y) ! ¬BELOW (y, x)
8x, y : INSIDE(x, y) ! ¬INSIDE(y, x)
8x, y : LEFT (x, y) ! ¬INSIDE(x, y)
8x, y : BELOW (x, y) ! ¬INSIDE(x, y) .

Query 1: We are interested in predicting if two randomly generated rectangles, are in
one of the spatial relations left, right, below, above, inside, contains.
Execution: In Tab 2, we show the F1 score for the learnable relations comparing
different learning schemes and parameters.

nUns LEFT RIGHT BELOW ABOVE INSIDE CONTAINS
NoLog - 0.909 0.907 0.933 0.87 0.34 0.313
Log 30 0.924 0.924 0.958 0.956 0.293 0.333
Log 50 0.946 0.944 0.946 0.944 0.5 0.491

Log (tran) 50 0.942 0.944 0.967 0.966 0.551 0.551

Table 2: The experimental evaluation is carried out on a test of 50 rectangulars
exploiting 15 supervisions and training for 10.000 epochs. All the learnable
relations are implemented as FFNNs with 20 hidden units.

Query 2: Say if in the learned model the following formulas are satisfied.

a) 8x, y, z : INSIDE(x, y) ^RIGHT (y, z) ! RIGHT (x, z)
b) 8x, y : LEFT (x, y) ! ABOV E(x, y)
c) 8x : LEFT (x, x)

Execution: In Tab. 3 we report the true values of the given formulas without and with
logical constraints respectively. As expected, the formulas a) and c) turn out to be
true and false respectively according to the other constraints. On the other hand, 2)
depend on the available examples for the model.

Formula Only Supervisions + Logic
a) 0.98 0.99
b) 0.82 0.55
c) 0.09 0.02

Table 3: Comparison of predictions for models enforcing different constraints.

Query 3 Determine the mutual positions of the following pairs of rectangles (R,K).

a) ((1, 1, 3, 2), (5, 5, 7, 8));
b) ((1, 4, 6, 6), (4, 3, 9, 7));
c) ((3, 3, 5, 5), (1, 1, 8, 8)).

30

50 rectangles, 15 supervisions, 4-20-6 neural net
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Generating the next char

8x IsZero(x) ) zero(x)
8x IsOne(x) ) one(x)
8x IsTwo(x) ) two(x)

8x IsZero(x) ) one(next(x)) ^ two(previous(x))
8x IsOne(x) ) two(next(x)) ^ zero(previous(x))
8x IsTwo(x) ) zero(next(x)) ^ one(previous(x))

8x next(previous(x)) = x

8x previous(next(x)) = x
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Generating the next char (con’t)

CLARE: a General Interface Layer to Integrate AI and Deep Learning 13

In particular, CLARE is used to define the domain of images and the binding of
the predicates one, two, three to the three output neurons of the classifier (thanks
to the Slice construct), which is trained as defined in the PointwiseConstraint

function using a cross-entropy loss:

Domain("Images", data=X)

Predicate("zero",("Images"),function=Slice(NN, 0))

Predicate("one",("Images"),function=Slice(NN, 1))

Predicate("two",("Images"),function=Slice(NN, 2))

PointwiseConstraint(NN, y, X)

Once the NN function has been learned, the generative functions are trained
as:

Predicate("eq",("Images", "Images"), function=eq)

Function("next",("Images"), function=NN_next)

Function("previous", ("Images"), function=NN_prev)

Constraint("forall x: zero(x) -> one(next(x))")

Constraint("forall x: one(x) -> two(next(x))")

Constraint("forall x: two(x) -> zero(next(x))")

Constraint("forall x: zero(x) -> two(previous(x))")

Constraint("forall x: one(x) -> zero(previous(x))")

Constraint("forall x: two(x) -> one(previous(x))")

Constraint("forall x: eq(previous(next(x)),x)")

Constraint("forall x: eq(next(previous(x)),x)")

where the function eq is implemented as the cosine-distance re-scaled into [0, 1].
The first six rules define the meaning of the next and previous mapping and
the last two constraints, by enforcing the inverse property, implement a neural
auto-encoder.

In Figure 4, it is shown an input image (left) and the output of the functions
next (center) and previous (right).

Missing Features. In this task we assume to have available a set of patterns
drawn from a double moon shaped distribution as show in Figure 5(a). The
patterns distributed along the lower moon belong to class A, while patterns along
the lower one do not belong to the class.

This simple supervised learning task can be expressed in CLARE as:

Domain(label="Points", data=X)

Predicate("A", "Points", function=NN_A)

PointwiseConstraint(NN_A, y_A, X)

Let us now assume that there are two new individuals p0 and p1 for which
no feature representation is available, but it is known that p0 and p1 belong and
not belong to class A, respectively. This can be expressed in CLARE as:

p0 = Individual(label="p0", ("Points"))

p1 = Individual(label="p1", ("Points"))

CLARE: a General Interface Layer to Integrate AI and Deep Learning 13
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Generating the next char … (con’t)
12 G. Marra et al.

Fig. 4: An example of the trained generative functions, The middle and right
pictures shown the outputs of the functions next and previous functions fed
with the image on the left, respectively.

The learning task seeks to infer the unknown relations among the individuals.
After starting the learning phase, CLARE outputs the predicate values for
all the groundings, and it correctly concludes that the following facts hold
true: grandFatherOf("Marco", "Michelangelo"), ¬grandFatherOf("Marco",
"Giuseppe"), grandFatherOf("Marco", "Francesco"), etc. On the other hand
nothing can be concluded regarding who is the grandfather of “Franco” and
“Andrea”, so leaving these values to be equal to their prior values.

One the training has been performed and the grounded predicates have been
computed, CLARE provides an easy interface for performing model checking also
in this symbolic environment. For example, let’s suppose that we want to check
whether the following rule holds true according to the computed assignments:

Constraint("forall x: forall y: forall z: grandFatherOf(x,z) and

fatherOf(y,z) -> fatherOf(x,y)")

As expected, the evaluation of the rule performed by returns that the rules is
perfectly verified by the computed assignments.

Pattern Generation. In this task, we exploit a set of around 15000 images
of handwritten digits, obtained extracting only the 0, 1 and 2 digits from the
MNIST dataset. We want to solve both a classification task, aiming at identifying
which digit an image represents, and a generation task, learning some generative
functions producing images from images. In particular, we want to learn two
generative functions, next and previous, which, given an image of a digit, will
produce an image of the next and previous digit, respectively. In order to give
each digit a next and a previous digit in the chosen set, we used a circular
mapping such that 0 is the next digit of 2 and 2 is the previous digit of 0.

This generative task can be solved in two steps: first, we learn the classifier
in a purely supervised fashion, then the image generator is trained in a purely
unsupervised fashion by simply exploiting the knowledge of the relations among
classes and the inverse nature of the next and previous operators.
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perfectly verified by the computed assignments.

Pattern Generation. In this task, we exploit a set of around 15000 images
of handwritten digits, obtained extracting only the 0, 1 and 2 digits from the
MNIST dataset. We want to solve both a classification task, aiming at identifying
which digit an image represents, and a generation task, learning some generative
functions producing images from images. In particular, we want to learn two
generative functions, next and previous, which, given an image of a digit, will
produce an image of the next and previous digit, respectively. In order to give
each digit a next and a previous digit in the chosen set, we used a circular
mapping such that 0 is the next digit of 2 and 2 is the previous digit of 0.

This generative task can be solved in two steps: first, we learn the classifier
in a purely supervised fashion, then the image generator is trained in a purely
unsupervised fashion by simply exploiting the knowledge of the relations among
classes and the inverse nature of the next and previous operators.

Notice that this is NOT based on GAN!
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Reconstruction of overwritten chars 

Figure 11: Some examples of the starting overlapped image and the foreground
and background digits involved.

classes.

8x in fore0 : zero(fore(x)) ^ ¬one(fore(x)) ^ . . . ^ ¬nine(fore(x))
8x in back0 : zero(back(x)) ^ ¬one(back(x)) ^ . . . ^ ¬nine(back(x))

...
8x : zero(fore(x)) _ one(fore(x)) _ . . . _ nine(fore(x)) (23)
8x : zero(back(x)) _ one(back(x)) _ . . . _ nine(back(x))

8x : zero(fore(x)) ! (¬one(fore(x)) ^ . . . ^ ¬nine(fore(x))
8x : zero(back(x)) ! (¬one(back(x)) ^ . . . ^ ¬nine(back(x))

...

These rules on the functions fore and back guarantee the good classification of the gen-
erated images. However, in order to enforce the correspondence between the original
digits and the outputs of the generators we also need

8x : equal(couple(fore(x), back(x)), x))

8x, y in Images0 : equal(fore(couple(x, y)), x)

8x, y in Images0 : equal(back(couple(x, y)), y) (24)
8x in Images0, 8y in Images1 : equal(fore(couple(x, y)), x)

8x in Images0, 8y in Images1 : equal(back(couple(x, y)), y)

...

Query: Given any image of overlapped digits in ImagesPair return the foreground and
background digits in Images.
Execution: As we mentioned above, the learning of the two generation functions fore

and back is carried out in two different steps. At first, we learn the traditional MNIST
classifiers zero, one, two, . . . , nine enforcing the constraints 22. Once such functions
are learned we fix them and we exploit these classifiers to learn the generative functions

36

Recognize the foreground 
and background numbers

I was told that the foreground char is
less or equal to the background char

MNIST



• A framework for computational laws of nature 

• Probability distributions and Lagrange multipliers, 
biological plausibility and focus of attention

• Bridging symbols and sub-symbols (logic 
representations & learning )

• Inference in the environment, full inference 
(searching in manifolds instead of the Boolean 
hypercube)

• Time and developmental issues (Piaget foundation 
of Developmental Psychology)

Conclusions
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OPEN ISSUES

• Learning loss functions by generators

• Learning of constraints

• Interactive environments

• Stage-based processing



LYRICS
Learning Yourself Reasoning and Inference 

with COnstraints

a development environment on top of tensorflow

https://github.com/GiuseppeMarra/lyrics

https://github.com/GiuseppeMarra/lyrics
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From parsimonious inference to induction

learning and the active role

inference

f

?(x)

x

 (x, f?(x)) inductive learning of new 
constraints by MMI clustering

maximize the sensibility

a cyclic process: learning 
from and of constraints!


