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real-world
phenomena

=

complex models
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lots of programming or data



THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Complexity of
real-world
phenomena

=
complex models

=
How did we get here? lots of programming or data
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40 Years of Microprocessor Trend Data
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THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

run a big pile of linear algebra
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Deep Learning and Logic:
Learnable Probabilistic Logics

That Run On GPUs




Tensorlog:
Key ideas and background



Probabilistic Deductive DBs @ﬁ:

1. uncle(X,Y) :-child(X,W) ,brother(W,Y). child(liam,eve) 0.99

2. uncle(X,Y) :—aunt (X,W) ,husband (W, Y). child(dave,eve) .99

3. status(X,tired) :-child(W,X),infant(W). child(1iam,bob) 0.75
husband (eve, bob) 0.9

infant(liam) 0.7
infant (dave) 0.1
aunt (joe,eve) 0.9

brother (eve,chip) 0.9

Horn clauses (rules)

ground unit clauses _
(facts) weight for each fact




Probabilistic Deductive DBs \%/\t

1. uncle(X,Y):-child(X,W) ,brother(W,Y). child(liam,eve) 0.99
2. uncle(X,Y) :—aunt (X,W) ,husband (W, Y). child(dave,eve) .99
3- 1 : i =X . child(liam,bob) 0.75
status(Xtired) :- child(W,X), infant(W), weighted(r3). busband(eve,bob) 0.9
infant(liam) 0.7
infant (dave) 0.1
aunt (joe,eve) 0.9
— brother (eve,chip) 0.9
We use this trick to i
weight rules Welghted(r3) 0.98

special fact only
appearing in this rule




Probabilistic Deductive KGs Cﬁ
(Knowledge Graphs)

1. uncle(X,Y) :-child(X,W) ,brother(W,Y). child(liam,eve) 0.99

2. uncle(X,Y) :—aunt (X,W) ,husband (W, Y). child(dave,eve) .99

3. status(X,tired) :-child(W,X),infant(W). child(1liam,bob) 0.75
husband (eve, bob) 0.9

infant(liam) 0.7
infant (dave) 0.1
aunt (joe,eve) 0.9

. brother(eve,chip) 0.9
Assumptions:

e (Only parameters are weights for facts)
e Predicates are unary or binary
e Rules have no function symbols or constants



Neural implementations of logic

~uncle(X,Y) :-child(X,W) ,brother(W,Y).
uncle(X,Y) :-aunt (X,W) ,husband(W,Y) .
- status(X,tired) :-child (W,X) ,infant (W) .

KBANN idea (1991): convert every DB fact, and
every possible inferable fact, to a neuron.

Similar “grounding strategies” are used by many
other soft logics: Markov Logic Networks,
Probabilistic Soft Logic, ...

A neuron for every possible inferable fact is “too
many” --- i.e., bigger than the DB.




Reasoning in PrDDBs/PrDKGs

~uncle(X,Y) :-child(X,W) ,brother(W,Y).
~uncle(X,Y) :-aunt (X,W) ,husband (W,Y) .

-status(X,tired) :-child(W,X) ,infant ,,c|e(liam,dave)

. ~uncle(liam,eve)
uncle(liam,chip)

possible inferences

o(..-) o( o(..) (Herbrand base)
//1//}<’\T -
child(liam,eve) /brother(e\m DB facts

child(liam,bob)

usual approach: “grounding” the rules



Reasoning in PrDDBs/PrDKGs

explicit grounding does not scale!

~uncle(X,Y) :-child(X,W) ,brother(W,Y).
~uncle(X,Y) :-aunt (X,W) ,husband (W,Y) .
- status(X,tired) : -child(W,X) ,infant (W) .

Example: inferring family relations like “uncle”

N people
N2 possible “uncle” inferences

N = 2 billion => N% =4 quintillion
N = 1 million = N? =1 trillion

A KB with 1M entities is small




Reasoning in TensorlLog

* TensorLog uses a knowledge-graph specific trick to get
scalability:
— “reasoning” means answering a query like: find all Y for

which p(a,Y) is true for some given predicate p,query
entity a; and theory T and KG)

— inferences for a logical theory can be encoded as a bunch
of functions: for every p, a, a vector a encodes a, and the
function fp(a) returns a vector encoding answers y (and
confidences)

— actually we have functions for p(a,Y) and p(Y,a).... called

f,0la)and £ (a)



Reasoning in TensorlLog

‘uncle(X,Y) :-child(X,W) ,brother(W,Y).
‘uncle(X,Y) :-aunt (X,W) ,husband (W,Y).
-status(X,tired) :-child(W,X) ,infant (W) .

Example: inferring family relations like “uncle”
* N people

* N possible “uncle” facts
- The vectors are

X is the nephew x is the uncle A O(N) not

f (x) - f(x) = OV

\Q \ (0,0,0.81,0,0,0.93,0,0,0)

one hot vectors vectors encoding
(0,0,0,1,0,0,0) . .
weighted set of DB instances



Reasoning in TensorlLog

* TensorLog uses a knowledge-graph specific

trick...functions from sets of entities to sets of
entities

* Key idea: You can describe the reasoning
process as a factor graph

 Example: Let’s start with some example
one-rule theories



Reasoning via message-passing: example

child(liam,eve),0.99 infant(liam),0.7
child(dave,eve),0.99 infant(dave),0.1
child(liam,bob),0.75 aunt(joe,eve),0.9

Query: uncle(liam, Y) ?

uncle(X,Y):-parent(X,W),brother(W,Y)

./

| [eve=0.99, thip=0.99*0.9]
bob=0.75%" '

[liam=1]

output msg for brother is sparse

mat multiply: Vi I\/Ibrother

husband (eve,bob),0.9 brother(eve,chip),0.9

Algorithm: build a factor
graph with one random
variable for each logical
variable, encoding a
distribution over DB
constants, and one factor for
each logical literal.

Belief propagation on factor
graph enforces the logical
constraints of a proof, and
gives a weighted count of
number of proofs supporting
each answer




Reasoning via message-passing: subpredicates

child(liam,eve),0.99 infant(liam),0.7
child(dave,eve),0.99 infant(dave),0.1
child(liam,bob),0.75 aunt(joe,eve),0.9

Query: uncle(liam, Y) ?

uncle(X,Y):-aunt(X,W),spouse(W,Y)
aunt(X,Y):-parent(X,W),sister(W,Y)

spouse @

= = e -

4aunt “

parent

husband (eve,bob),0.9 brother(eve,chip),0.9

Recursive predicate calls can
be expanded in place in the
factor graph

Stop at a fixed maximum
depth (and return count of
zero proofs)




Reasoning via message-passing: subpredicates

Query: uncle(liam, Y) ?

child(liam,eve),0.99
child(dave,eve),0.99
child(liam,bob),0.75
husband (eve,bob),0.9

uncle(X,Y):-aunt(X,W),spouse(W,Y)
aunt(X,Y):-parent(X,W),sister(W,Y)

spouse

spouse

infant (1iam),0.7
infant (dave),0.1

aunt (joe,eve),0.9
brother(eve,chip),0.9

e Recursive
predicate calls can
be expanded in
place in the factor
graph

e Multiple clauses
for the same
predicate: add the
proof counts for
each clause




Reasoning via message-passing: key ideas

Query: uncle(liam, Y) ?

uncle(X,Y):-child(X,W),brother(W,Y)

child(liam,eve),0.99
child(dave,eve),0.99
child(liam,bob),0.75
husband (eve,bob),0.9

infant (1iam),0.7
infant (dave),0.1

aunt (joe,eve),0.9
brother(eve,chip),0.9

child

@

-©

General case for p(c,Y):
* initialize the evidence variable X
to a one-hot vector for c

oroth e wait for BP to converge
roner * read off the message y that

would be sent from the output
variable Y.
e un-normalized probability
* y[d]is the weighted number of
proofs supporting p(c,d)




Reasoning via message-passing: key ideas

child(liam,eve),0.99
child (dave,eve),0.99
child(1iam,bob),0.75
husband (eve,bob),0.9

infant (1iam),0.7
infant (dave),0.1

aunt (joe,eve),0.9
brother(eve,chip),0.9

Special case:

e |If all clauses are polytrees (~= every free variable has one path of
dependences linking it to a bound variable) then BP converges in linear
time and will result in a fixed sequence of messages being passed

e Only afew linear algebra operators are used in these messages:

e vector-matrix multiplication

e Hadamard product

e multiply vl by L1 norm of v2

e vector sum
e (normalization)




Rule rl: uncle(X,Y):- r2: uncle(X,Y):- r3: status(X,T):-
parent(X,W), aunt(X,W), assign_tired (T,
brother(W,Y) husband(W,Y) parent(X,W),

infant(W),any (T,W)
Function | g11 () g2 (@) PRACA
Viw = uclVIparent Viw = u:Maunt Vow = u:M
Operation | viy = v w Vi = V1w V3,W = Vinrant
sequence | voy = ViwMyprother | V2,¥ = VwMunusband | W = Vo,w o V3w
defining | vy =vay Vy = Voy V1T = Vassign tired
function v4 1 = VivMany
T =virTovyr
Returns | vy vy v

The result of this message-passing sequence
produced by BP is just a function:

the function fp:io(a) we were trying to construct!



Note on Semantics

The semantics are proof-counting, not model-counting:
conceptually

* For each answer a to query Q, find all derivations d_that
prove a

* The weight of each d_is product of weight w, of each KG fact
f used in that derivation

 The weight of a is the sum of the weights of all derivations

This is an unnormalized stochastic logic program (SLP) - Cussens
and Muggleton, with weights computed efficiently (for this

special case) by dynamic programming (even with exponentially
many derivations)



Note on Semantics

Compare to model-counting where conceptually

 There is a distribution Pr(KG) over KGs
— Tuple-independence: draw a KG by picking each fact f
with probability W,
* The probability of a fact ' is the probability T+KG" implies f,
for a KG" is drawn from Pr(KG)

E.g.: ProbLog, Fuhr’s Probabilistic Datalog (PD), ...



Tensorlog:
Learning Algorithms



Learning in TensorLog

Inference is now via a numeric function: y= giO“”C'e(ua)
y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)
Define loss function relative to target proof-count values y* for x, eg
Ioss(gio““c'e(ua), v*) = crossEntropy(softmax(g(x)),y*)

Minimize the loss with gradient-descent, ....

e To adjust weights for selected DB relations, e.g.: dloss/dM__



Key point: Learning is “free” in TensorLog

Inference is now via a numeric function: y= giO“”C'e(ua)
y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)
Define loss function relative to target proof-count values y* for x, eg
Ioss(gio““c'e(ua), v*) = crossEntropy(softmax(g(x)),y*)

Minimize the loss with gradient-descent, ...
e To adjust weights for selected DB relations, e.g.: dIoss/dMIOIrother

e Homegrown implementation: SciPy implementation of
operations, derivatives, and gradient descent optimization
e Compilation to TensorFlow expressions = TF derivatives,

optimizers, ...



Tensorlog:
Experimental Results



Experiment: factual Q/A from a KB
WikiMovies dataset

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo’, ...]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']

Data: from Miller, Fisch, Dodge, Karami,
Bordes, Weston “Key-Value Memory
Networks for Directly Reading Documents”

e Questions: 96k train, 20k dev, 10k test
Knowledge graph: 421k triples about
16k movies, 10 relations

® Subgraph/question embedding:
o 93.5%
e Key-value memory network:
o 93.9% “reading” the KG
o 76.2% by reading text of articles

starred_actors
starred_actors
starred_actors
starred_actors
directed by
has_genre
release_year

Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys

Harvey Keitel
Danny DeVito
Joe Piscopo
Ray Sharkey
Brian De Palma
Comedy

1986




TensorLog model

# relationsin DB =9

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo’, ...]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']

answer(Question, Entity) :-
mentions_entity(Question,Movie),
starred_actors(Movie,Entity),
feature(Question,F),weight_sa_io(F).
% w_sa_f: weight for starred_actors(i,0)

answer(Question, Movie) :-
mentions_entity(Question,Entity),
written_by(Movie,Entity),
feature(Question,F),weight_wb_oi(F).

Total: 18 rules

starred_actors
starred_actors
starred_actors
starred_actors
directed_by
has_genre
release_year

written_by
has_genre

Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys

How to .. Killer
How to .. Killer

Harvey Keitel
Danny DeVito
Joe Piscopo
Ray Sharkey
Brian De Palma
Comedy

1986

Luke Ricci
Comedy




TensorLog model

k = # relationsin DB =9

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo’, ...]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']

answer(Question, Entity) :-
mentions_entity(Question,Movie),
starred_actors(Movie,Entity),
feature(Question,F),weight_sa_io(F).

% W_Sd_J. WeIgnt Jor starred_actors(i,0) These welghts dare a
linear classifier that
answer(Question, Movie) :-

mentions_entity(Question,Entity), Says which rule to use

written_by(Movie,Entity), to answer which
feature(Question,F),weight_wb_oi(F). ‘ question

Total: 18 rules



Experiment: Factual Q/A with a KB

Method Accuracy Time per epoch
Subgraph/question embedding 93.5%
Key-value memory network 93.9%
TensorLog (1,000 training examples) 89.4% 6.1 sec
TensorLog (10,000 training examples)  94.8% 1.7 min
TensorLog (96,182 training examples)  95.0% 49.5 min

e KG is about 420k movie facts + 850k facts about the
questions (mentions_entity/2, features/2)



Joint entity-linking and QA
proposed extension

answer(Question,Answer) :-
classification(Question,aboutActedIn),
mentionsEntity(Question,Entity), actedIn(Answer,Entity).

answer(Question,Answer) :-
classification(Question,aboutDirected),
mentionsEntity(Question,Entity), directed(Answer,Entity).

answer(Question,Answer) :-
classification(Question,aboutProduced),
mentionsEntity(Question,Entity), produced(Answer,Entity).

mentionsEntity(Question,Entity) :-
containsNGram(Question,NGram), matches(NGram,Name),
possibleName(Entity,Name), popular(Entity).
classification(Question,Y) :-
containsNGram(Question,NGram), indicatesLabel(NGram,Y).
matches(NGram,Name) :-

containsWord(NGram,Word), containsWord(Name,Word), important(Word).



Experiment: Relational Learning Benchmarks

Task ProPPR TensorLog

CORA (13k facts, 10 rules) | AUC-ROC 83.2 | AUC-ROC 97.6

UMLS (5k facts, 226 rules) Accuracy 49.8 | Accuracy 52.5

Wordnet (276k facts)

Hypernym (46 rules) Accuracy 93.4 Accuracy 93.3
Hyponym (46 rules) Accuracy 92.1 | Accuracy 92.8

Theories all learned using ISG (Wang et al, CIKM 2014) and
then fixed



Experiment: Scalability of Inference

Friends and Smokers

Grid Transitive Closure

Name  # Entities # Facts | Name # Entities # Facts
FS100 400 5,060 | GR10 100 784
FSik 4,000 48,260 | GR25 625 5,329
FS10k 40,000 480,260 | GR50 2,500 21,904
FS100k 400,000 4800,260 | GR100 10,000 88,804
FS500K 2,000,000 24,000,260 | GR200 40,000 357,604

shallow inference task

deeply recursive inference task



Experiment: Scalability of Inference

edge(cell 2 3,cell 2 4) 0.2

cell 2 3 Ak
)
-O—() C}
00
cell 2 4
£ )
O <[> O—0O—

path(X,Y) :- edge(X,Y)
path(X,Z) :- edge(X,Z),path(Z,Y)



Experiment: Scalability of Inference

Graph | ProPPR SciPy Tensorflow CPU | Tensorflow GPU
none b=25 b=250 | b=25 b=250 | b=25 Db=250

FS100 1392.8 | 73.08

FSi1k 1310.6 | 71.40

FS10k 1190.8 | 68.39

FS100k 236.1 | 33.19

FS500k 178.4 | 12.16

GR10 43.1 | 75.1 i

GR25 83.8 | 68.8

GRA50 108.1 | 47.2

GR100 1173 | 113

GR200 116.6 0.9

Queries per second: machine with one GPU
o eg on query -? path(cell_2 4Y)
bold is best TensorLog performer - ProPPR italicized if it “wins”

Mo||eys

aAISINDal



Experiment: Scalability of Inference

Graph | ProPPR SciPy Tensorflow CPU | Tensorflow GPU
none b=25 b=250 | b=25 b=250 | b=25 Db=250

FS100 1392.8 | 73.08 1247.64 -

FS1k 1310.6 | 71.40 1183.65 3635.62
FS10k 1190.8 | 68.39 551.53 907.64
FS100k 236.1 | 33.19 93.33 99.44
FS500k 178.4 | 12.16 16.72 17.10

GRI10 43.1 | 75.1  567.6 —
GR25 83.8 | 68.8 325.8 1264.2
GR50 108.1 | 47.2 99.4 466.0
GR100 117.3 | 11.3 12.3 108.6
GR200 116.6 0.9 1.0 8.5

Queries per second: machine with one GPU

bold/italics is best performer

b=25 means that 25 queries are done in parallel (as a “minibatch”)
minibatch paralellization gives large - up to 10x - speedup on one core

Mo||eys

aAISINDal



Experiment: Scalability of Inference

Graph | ProPPR SciPy Tensorflow CPU | Tensorflow GPU
none b=25 b=250 | b=25 b=250| b=25 b=250
FS100 1392.8 | 73.08 1247.64 — | 202.29 —
FSik 1310.6 | 71.40 1183.65 3635.62 | 143.34  926.22
FS10k 1190.8 | 68.39 551.53 907.64 | 44.34  237.26
FS100k 236.1 | 33.19 93.33 99.44 9.32 24.81
FS500k 178.4 | 12.16 16.72 17.10 — —
GR10 43.1 | 75.1 067.6 — | 250.3 - i
GR25 83.8 | 68.8 325.8 1264.2 | 1749 11594
GRA50 108.1 | 47.2 99.4 466.0 67.9 466.8
GR100 1173 | 113 12.3 108.6 10.1 88.2
GR200 116.6 0.9 1.0 8.5 0.89 7.65
e Queries per second: machine with one GPU
e bold/italics is best performer
e b=25 means that 25 queries are done in parallel (as a “minibatch”)
e Compared TensorFlow and homegrown sparse matrix backends ...

Mo||eys

aAISINDal



Experiment: Scalability of Inference

Mo||eys

aAISINDal

Graph | ProPPR SciPy Tensorflow CPU | Tensorflow GPU
none b=25 b=250 | b=25 b=250| b=25 b=250
FS100 1392.8 | 73.08 1247.64 — | 202.29 — | 452.53 -
FSik 1310.6 | 71.40 1183.65 3635.62 | 143.34  926.22 | 198.99 1552.55
FS10k 1190.8 | 68.39 551.53 907.64 | 44.34 237.26 | 67.95 314.10
FS100k 236.1 | 33.19 93.33 99.44 9.32 2481 | 11.06 37.72
FS500k 178.4 | 12.16 16.72 17.10 - - - -
GR10 43.1 | 75.1 067.6 — | 250.3 — | 204.8 -
GR25 83.8 | 68.8 325.8 1264.2 | 174.9 11594 | 187.9 1826.5
GRA50 108.1 | 47.2 99.4 466.0 67.9 466.8 85.5 872.8
GR100 1173 | 113 12.3 108.6 10.1 88.2 19.3 191.2
GR200 116.6 0.9 1.0 8.5 0.89 7.65 1.6 16.4
e Queries per second: machine with one GPU (Titan X, 12Gb)
e bold/italics is best performer
e b=25 means that 25 queries are done in parallel (as a “minibatch”)
e Tested TensorFlow and hand-constructed sparse matrix backends
e Tested TensorFlow with GPU: only 1.5-2x faster for inference and

then only on deeper models



Graph

GRI10
GR25
GRA50
GR100
GR200

Experiment: Scalability of Learning

SciPy
Time
11.6 0.90
2544.7 0.98
>10000 =
>10000 —
>10000 —

Acc

Tensorflow CPU

Time Acc
1.23 0.85
24.88 1.00
296.0 0.95
3203.6 0.98

Tensorflow GPU

Time
0.97
4.77
30.7

392.9

Acc
0.80
1.00
0.97
1.00

GPU Speedup

vs SciPy wvs CPU
12.0 1.3
533.3 5.2

— 9.6

— 8.2

O

©)

code

Task: learn grid transition weights so that transitive closure operations
perform a particular navigational goal
Go from cell to closest “landmark” cell, like (10,10) or (30,50)
Minibatch size of 25
A 25 by 25 grid
Learning is much faster with TensorFlow and with GPUs

Architected for learning/repeated passes over data with same



Experiment: Robustness of Learning

Grid Size Max Depth | # Graph Nodes Acc
SciPy TF SciPy TF
16 10 68 2696 99.9 97.2
18 12 80 3164 939 96.9
20 14 92 3632 25.2 99.1
22 16 104 4100 8.6 984
24 18 116 4568 2.4 0.0

e Tune parameters on 16x16 grid task

e Run same parameters on larger grids (deeper inference, different

architecture networks)

e Compare homegrown gradient descent and well-tuned Adagrad

(Tensorflow implementation)

Adagrad is more robust and faster




Tensorlog:
Extensions



Experiment: Learning Other Semantics

Inference is now via a numeric function: y= giO“”C'e(ua)
y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)
Define loss function relative to target proof-count values y* for x, eg

Ioss(gio““c'e(ua), v*) = crossEntropy(softmax(g(x)),y*)

softmax normalizes the proof counts y

so you learn a conditional distribution P(y|x) (butit's
e i.e. sum of y’s will be 1.0 great to
e can rank people by confidence in being optimize!)

“Bob’s uncle” but can’t tell how many
uncles Bob has



Adding logistic
regression

Key point: flexibility is free = ‘ontop’of

TensorlLog
Inference is now via a numeric function: y= giO“”C'e(ua)

y encodes {b:uncle(a,b)} is true and y[b]=confidence iA uncle(a,b)

Define loss function relative to target proof-count vagfies y* for x, eg

Ioss(gio““c'e(ua), v*) = crossEntropy(sigmoid(g(x) + b), y*)

Alternative: convert weighted proofcounts to an arbitrary
distribution - e.g. with a biased sigmoid - and assess loss
relative to that. Loss function changes, learning still “free”.

Then you can learn to match an arbitrary target distribution.



Example: alternative semantics

Recall proof-counting was compared to model-counting systems
(eg ProbLog2) where conceptually

 There is a distribution Pr(KG) over KGs
— Tuple-independence: draw a KG by picking each fact f with
probability W,
 The probability of a fact f’ is the probability T+KG’ implies f, for
a KG’ is drawn from Pr(KG)

Experiments: for grid world, estimate Pr(path(a,b)) using a sample
of 1M random KG/grids drawn from the tuple-independence
model



Experiment: Learning Alternate Semantics

Experiment: learn
grid-transition weights to
approximate ProbLog2’s
inference weights.

Error drops by factor of 10x.

Error before (1) and after (2) training
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Experiment: Learning Alternate Semantics

Error in estimate of Pr[path(x,) before traini

Experiment: learn i L
grid-transition weights to
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Experiment: Learning Representations

edge(cell_2_ 3, cell_2_4) 02

cell 2 3 /J\ Replace learnable
et weight 0.2 with a
function of learned
_<> ®, representations of
cell 2 3 and
e P cell 2 4.
RSN NS N
cell 2 4 Each cell  has a
£ 3—5 <> (3—( learned vector
representation e
O <[> OO

path(X,Y) :- edge(X,Y)
path(X,Z) :- edge(X,Z),path(Z,Y)



Experiment: Learning Representations

Experiment: learn a neural model for grid-transition weights.

edge(cell1, cell2) =
log(1 + exp(sum_d (e1[d] - e2[d])) * M[cell1,cell2]

makes edge score positive \

0,1 mask so only grid
edges are considered

Averaged over 10 trials, 10x10
grid, 100 epochs.

Manhattan distance in
e Accuracy 97.8% embedding space, but

e Accuracy of baseline: 85.8%  directional: want
weights to encourage

(one weight per edge) transitions toward the
target cell.



Tensorlog:
Extension (Neural ILP)

Fang Yang, Zhilin Yang




Learning rules for TensorLog

Given only examples:
e uncle(liam,Y): Y should be {“bob”}
e aunt(liam,Y):Y should be {“mary, “sue”

Learn full model (parameters and rules)

* Basicidea:
— TensorLog programs are cpmpiled Function | giL (i)
to a sequence of differentiable V1w = UcMparent
operators Operation | viy = viw

sequence | Vo y = ViwMprother

— Each operator Is applIEd toa defining | vy =vay

memory location ~= logical variable
* Learn sequence with a neural

function

controller Returns | vy




Learning rules for TensorLog

Final output is LSTM controller: reads p,a at each
attention over time step in computing Y : p(a,Y)

memory cells [
after T steps | Controller

Operators
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New memory cell allocated at
each time step: contents are
formed by attention over ops and
previous memory cells

Mg

Current status:
chain rules only,
hard KB

Function
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Operation
sequence
defining
function

Vi,w = ucharent
Vw = Vi,w

v2,y = ViwMbrother
Vy = Vay

Returns
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Statistical relational learning

ISG Neural LP

=2 =3 T=2 T=3

UMLS 43.5 43.3 92.0 93.2
Kinship  59.2 59.0 90.2 90.1

WikiMovies with natural language queries.

directed_by (Blade Runner,Ridley Scott)
written_by (Blade Runner,Philip K. Dick)

Knowledge base starred_actors (Blade Runner, Harrison Ford)
starred_actors (Blade Runner, Sean Young)
Queations What year was the movie Blade Runner released?
S ; Who is the writer of the film Blade Runner?
Model Accuracy

Key-Value Memory Network 93.9
Neural LP 94.6




Results for Neural Inductive Logic
Programming

Node+LinkFeat 94.3 87.0 34.7
DistMult 94 .2 BT.A 40.8
Neural LP 94.5 83.7 36.2




Recovering rules for Neural ILP

1.00 partially_contains (C, A) <~ contains (B, A) A contains (B, C)
0.45 partially_contains (C, A) <—contains (A,B) A contains (B, C)
0.35 partially_contains (C, A) +—contains (C,B) A contains (B, A)

1.00 marriage_location (C, A) «<—nationality (C,B) A contains (B, A)
0.35 marriage_location (B, A) +—nationality (B, A)
0.24 marriage_location (C,A) <—place_lived (C,B) A contains (B, A)

1.00 film_edited_by (B, A) «—nominated_for (A, B)
0.20 film_edited_by (C, A) <—award_nominee (B, A) A nominated_for (B, C)

Function | g7i(d,)

| Vi,w = ucharent
query——| Controller Operators Operation Vw = V1w

1M sequence | vo,y = ViwMprother
Memory ™ defining | vy =voy

01 .. of%

Mg

L : function
J ; .
R [o - Returns | vy




Results for Neural Inductive Logic
Programming

Synthetic task: learning specific long paths in grid, like “NE-NE-S-S”

€49 Neural LP
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Where to next?

William Cohen
Google Al



TensorLog model

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo’, ...]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']

answer(Question, Entity) :-
mentions_entity(Question,Movie),
starred_actors(Movie,Entity),
feature(Question,F),weight_sa_io(F).
% w_sa_f: weight for starred_actors(i,0)

answer(Question, Movie) :-
mentions_entity(Question,Entity),
written_by(Movie,Entity),
feature(Question,F),weight_wb_oi(F).

Total: 18 rules

starred_actors
starred_actors
starred_actors
starred_actors
directed_by
has_genre
release_year

written_by
has_genre

Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys
Wise Guys

How to .. Killer
How to .. Killer

Harvey Keitel
Danny DeVito
Joe Piscopo
Ray Sharkey
Brian De Palma
Comedy

1986

Luke Ricci
Comedy




TensorLog model

s this the best interface to give Google answer(Question, Entity) -
programmers to build models? mentions_entity(Question, Movie
starred_actors(Movie,Entity),
Problems: feature(Question,F),weight_sa i
% w_sa_f: weight for starred _ac
. H - . see
Hard to predlct what will happen in swer(Question, Movie) -
the COmplIed model (What does the mentions_entity(Question,Entity
BP stage do to construct a model?)  written_by(Movie,Entity),
e Hard to quantify over relations (do ~ feature(Question,F)weight_wb_
second order reasoning)
e Awkward to swap back and forth
between TensorFlow and TensorlLog
(declarative vs functional)

Proposal: language for compilation
target for Tensorlog



Neural Query Language: 1st-order

answer =

-1: go “backwards”
mode oi

question.mentions_entity().starred_actors().if _exists(
question.feature() & nq.one('starred_actors’).indicates(-1))

| question.mentions_entity().directed_by().if_exists(
question.feature() & ng.one(‘directed by’).indicates(-1))

“features that indicate the
‘starred_actors’ KG relation”

“features that indicate the
‘directed_by’ KG relation”

X.if_exists(y): return vector x
multiplied by sum of weights iny
... a soft version of return x iff y is
non-empty else empty set

answer(Question, Entity) :-
mentions_entity(Question,Movie),
starred_actors(Movie,Entity),
feature(Question,F),
indicates(F,’starred_actors’).

answer(Question, Movie) :-
mentions_entity(Question,Entity),
written_by(Movie,Entity),
feature(Question,F),
indicates(F,’written_by’)



Neural Query Language: 1st-order

answer =
question.mentions_entity().starred_actors(+1).if _exists(
question.feature() & nq.one(‘starred_actors’).indicates_rel(-1)).if_exists(
question.feature() & ng.one(‘forward’).indicates_dir(-1)))
| question.mentions_entity().starred_actors(-1).if _exists(
question.feature() & nq.one(‘starred_actors’).indicates_rel(-1)).if_exists(
question.feature() & ng.one(‘backward’).indicates_dir(-1)))

answer(Question, Entity) :-
mentions_entity(Question,Movie),
starred_actors(Movie,Entity),
feature(Question,F),
indicates_rel(F,’starred_actors’),
indicates_dir(F, forward’).



NQL semantics in Tensorflow

variable/expression output x

a vector encoding a weighted set (localist representation)

ng.one(‘bob’,’person’)
x.jump_to(‘bob’,’person’)

v_bob, one hot vector for entity ‘bob’

ng.all(‘person’)
x.jump_to_all(‘person’)

k-hot vector for set off all elements of type ‘person’
i.e. a ones vector

ng.none(‘person’)
x.jump_to_none(‘person’)

k-hot vector for empty set of elements of type ‘person’
i.e. a zeros vector

x.r() x.dot(M_r)

x.follow(‘r’) where M_r is sparse matrix for r and x a k-hot vector
x|y Xty

X+y

X &y X"y

x*y Hadamard aka component-wise product

x.filtered_by(‘r’,’bob’)

x.weighted_by(‘r’,’bob’)

X *v_bob.dot(M_r’)
M_r’is transpose

x.if_exists(y)
x.weighted by sum(y)

X * y.sum()




Neural Query Language: 2nd-order

def kg_relation(question):
return question.features().feat2rel() % classify relation

def answer(question):
return question.mentions_entity().follow(kg_relation(question))

verb(t37,starred _in)
starred_in(tom_hanks,the post) — subject(t37,tom_hanks)

object(t37,the_post)
x.follow(g) == (x.subject(-1) & g.verb(-1)).object()

x={tom_hanks} g={starred_in}: (tom_hanks is sub) & (starred_in is verb) — object



Theoretical peak (GFLOP/s)

Conclusions and Wrap-Up
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“‘deep” / GPU-based approaches to Al?



Conclusions and Wrap-Up

How should logic and logic programming approaches to Al be
integrated with “neural” / “"deep” / GPU-based approaches to Al?

TensorFlow tries to answer this in one way:

e Scalable - but restricted - declarative subset of Prolog
e Very efficient for learning and inference
e Combinable with neural methods:
o Eg: Logistic regression model “on top” of proof
counts (for tuple-independence)
o Eg: Representation learning “underneath” (to
define edge weights)



