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How did we get here?
2017: 45 Teraflops
(45,000 GFLOPS)



How did we get here?

run Hadoop, Spark, ...

run a big pile of linear algebra



Clean 
understandable 
elegant models complex models

Deep Learning and Logic:

Learnable Probabilistic Logics 
That Run On GPUs



Tensorlog: 
Key ideas and background



Probabilistic Deductive DBs

Horn clauses (rules)

ground unit clauses 
(facts) weight for each fact



Probabilistic Deductive DBs

We use this trick to 
weight rules

special fact only 
appearing in this rule

weighted(r3)            0.98

 status(X,tired) :- child(W,X), infant(W), weighted(r3).

special fact only 
appearing in this rule



Probabilistic Deductive KGs
(Knowledge Graphs)

Assumptions: 
● (Only parameters are weights for facts)
● Predicates are unary or binary
● Rules have no function symbols or constants



Neural implementations of logic

KBANN idea (1991):  convert every DB fact, and 
every possible inferable fact, to a neuron.

Similar “grounding strategies” are used by many 
other soft logics: Markov Logic Networks, 
Probabilistic Soft Logic, …

A neuron for every possible inferable fact is “too 
many” --- i.e., bigger than the DB.



Reasoning in PrDDBs/PrDKGs

uncle(liam,chip) 

brother(eve,chip) child(liam,eve) 

child(liam,bob) 

uncle(liam,eve) 

σ(….)

DB facts

possible inferences
(Herbrand base)

uncle(liam,dave) 

σ(….)σ(….)

usual approach: “grounding” the rules

 



Reasoning in PrDDBs/PrDKGs
explicit grounding does not scale!

Example: inferring family relations like “uncle”
• N people
• N2 possible “uncle” inferences

• N = 2 billion  ➔ N2 = 4 quintillion
• N = 1 million ➔ N2 = 1 trillion

A KB with 1M entities is small



Reasoning in TensorLog

• TensorLog uses a knowledge-graph specific trick to get 
scalability: 

– “reasoning” means answering a query like: find all Y for 
which p(a,Y) is true for some given predicate p;query 
entity a; and theory T and KG)

– inferences for a logical theory can be encoded as a bunch 
of functions: for every p, a, a vector a encodes a, and the 
function f

p
(a) returns a vector encoding answers y (and 

confidences)

–
– actually we have functions for p(a,Y) and p(Y,a)…. called  

f
p:io

(a) and  f
p:oi

(a)  



Reasoning in TensorLog

Example: inferring family relations like “uncle”
• N people
• N2 possible “uncle” facts
• N = 1 million ➔ N2 = 1 trillion

f
1
(x) = Y                      f

2
(x) = Y

one-hot vectors
(0,0,0,1,0,0,0)

vectors encoding
weighted set of DB instances

x is the nephew x is the uncle

(0,0,0.81,0,0,0.93,0,0,0)

The vectors are 
size O(N) not 
O(N2)



Reasoning in TensorLog

• TensorLog uses a knowledge-graph specific 
trick…functions from sets of entities to sets of 
entities

• Key idea: You can describe the reasoning 
process as a factor graph

• Example: Let’s start with some example 
one-rule theories



Reasoning via message-passing: example

X parent W brother Y

uncle(X,Y):-parent(X,W),brother(W,Y)

Query: uncle(liam, Y) ?

 [liam=1] [eve=0.99,
bob=0.75]

[chip=0.99*0.9]

• Algorithm: build a factor 
graph with one random 
variable for each logical 
variable, encoding a 
distribution over DB 
constants, and one factor for 
each logical literal.

• Belief propagation on factor 
graph enforces the logical 
constraints of a proof, and 
gives a weighted count of 
number of proofs supporting 
each answer

…

output msg for brother is sparse 
mat multiply: v

W
 M

brother



Reasoning via message-passing: subpredicates

X aunt W spouse Y

uncle(X,Y):-aunt(X,W),spouse(W,Y)
aunt(X,Y):-parent(X,W),sister(W,Y)

Query: uncle(liam, Y) ?

…

X’ parent W’ sister Y’

• Recursive predicate calls can 
be expanded in place in the 
factor graph

• Stop at a fixed maximum 
depth (and return count of 
zero proofs)



Reasoning via message-passing: subpredicates

X aunt W spouse Y

uncle(X,Y):-aunt(X,W),spouse(W,Y)
aunt(X,Y):-parent(X,W),sister(W,Y)

Query: uncle(liam, Y) ?

X’ parent W’ sister Y’

• Recursive 
predicate calls can 
be expanded in 
place in the factor 
graph

• Multiple clauses 
for the same 
predicate: add the 
proof counts for 
each clauseX’’ uncle W’ spouse Y’’

sum



Reasoning via message-passing: key ideas

X child W brother Y

uncle(X,Y):-child(X,W),brother(W,Y)

Query: uncle(liam, Y) ?

General case for p(c,Y): 
• initialize the evidence variable X 

to a one-hot vector for c
• wait for BP to converge
• read off the message y that 

would be sent from the output 
variable Y.

• un-normalized probability 
• y[d] is the weighted number of 

proofs supporting p(c,d)



Reasoning via message-passing: key ideas

Special case: 
• If all clauses are polytrees (~= every free variable has one path of 

dependences linking it to a bound variable) then BP converges in linear 
time and will result in a fixed sequence of messages being passed

• Only a few linear algebra operators are used in these messages:
• vector-matrix multiplication
• Hadamard product
• multiply v1 by L1 norm of v2
• vector sum
• (normalization)



The result of this message-passing sequence 
produced by BP is just a function: 

the function f
p:io

(a) we were trying to construct!



Note on Semantics

The semantics are proof-counting, not model-counting: 
conceptually

• For each answer a to query Q, find all derivations d
a
 that 

prove a
• The weight of each d

a
 is product of weight w

f
 of each KG fact 

f used in that derivation
• The weight of a is the sum of the weights of all derivations

This is an unnormalized stochastic logic program (SLP) - Cussens 
and Muggleton, with weights computed efficiently (for this 
special case) by dynamic programming (even with exponentially 
many derivations)



Note on Semantics

Compare to model-counting where conceptually

• There is a distribution Pr(KG) over KGs
– Tuple-independence: draw a KG by picking each fact f 

with probability w
f
 

• The probability of a fact f’ is the probability T+KG’ implies f’, 
for a KG’ is drawn from Pr(KG) 

E.g.: ProbLog, Fuhr’s Probabilistic Datalog (PD), ...



Tensorlog: 
Learning Algorithms



Learning in TensorLog

Inference is now via a numeric function:   y = g
io

uncle(u
a
) 

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(softmax(g(x)),y*)

Minimize the loss with gradient-descent, ….
● To adjust weights for selected DB relations, e.g.: dloss/dM

brother



Key point: Learning is “free” in TensorLog

Inference is now via a numeric function:   y = g
io

uncle(u
a
) 

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(softmax(g(x)),y*)

Minimize the loss with gradient-descent, ...
● To adjust weights for selected DB relations, e.g.: dloss/dM

brother

● Homegrown implementation: SciPy implementation of 
operations, derivatives, and gradient descent optimization

● Compilation to TensorFlow expressions ⇒ TF derivatives, 
optimizers, ...



Tensorlog: 
Experimental Results



who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

starred_actors Wise Guys Harvey Keitel
starred_actors Wise Guys Danny DeVito
starred_actors Wise Guys Joe Piscopo
starred_actors Wise Guys Ray Sharkey
directed_by Wise Guys Brian De Palma
has_genre Wise Guys Comedy
release_year Wise Guys 1986
...

Data: from Miller, Fisch, Dodge, Karami, 
Bordes, Weston “Key-Value Memory 
Networks for Directly Reading Documents”

● Questions: 96k train, 20k dev, 10k test 
Knowledge graph: 421k triples about 
16k movies, 10 relations

● Subgraph/question embedding:
○ 93.5% 

● Key-value memory network:
○ 93.9% “reading” the KG 
○ 76.2% by reading text of articles 

Experiment: factual Q/A from a KB
WikiMovies dataset



TensorLog model

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

starred_actors Wise Guys Harvey Keitel
starred_actors Wise Guys Danny DeVito
starred_actors Wise Guys Joe Piscopo
starred_actors Wise Guys Ray Sharkey
directed_by Wise Guys Brian De Palma
has_genre Wise Guys Comedy
release_year Wise Guys 1986
…
written_by How to .. Killer Luke Ricci
has_genre How to .. Killer Comedy
...

answer(Question, Entity) :-
  mentions_entity(Question,Movie),  
  starred_actors(Movie,Entity),
   feature(Question,F),weight_sa_io(F).
  % w_sa_f: weight for  starred_actors(i,o)
...
answer(Question, Movie) :-
  mentions_entity(Question,Entity),
  written_by(Movie,Entity),  
  feature(Question,F),weight_wb_oi(F).
...
Total: 18 rules

# relations in DB = 9



TensorLog model

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

answer(Question, Entity) :-
  mentions_entity(Question,Movie),  
  starred_actors(Movie,Entity),
   feature(Question,F),weight_sa_io(F).
  % w_sa_f: weight for  starred_actors(i,o)
...
answer(Question, Movie) :-
  mentions_entity(Question,Entity),
  written_by(Movie,Entity),  
  feature(Question,F),weight_wb_oi(F).
...
Total: 18 rules

k = # relations in DB = 9

These weights are a 
linear classifier that 
says which rule to use 
to answer which 
question



Experiment: Factual Q/A with a KB

• KG is about 420k movie facts + 850k facts about the 
questions (mentions_entity/2, features/2) 



Joint entity-linking and QA
proposed extension

answer(Question,Answer) :-
classification(Question,aboutActedIn),
mentionsEntity(Question,Entity), actedIn(Answer,Entity).

answer(Question,Answer) :-
classification(Question,aboutDirected),
mentionsEntity(Question,Entity), directed(Answer,Entity).

answer(Question,Answer) :-
classification(Question,aboutProduced),
mentionsEntity(Question,Entity), produced(Answer,Entity).

...
mentionsEntity(Question,Entity) :-

containsNGram(Question,NGram), matches(NGram,Name),
possibleName(Entity,Name), popular(Entity).

classification(Question,Y) :-
containsNGram(Question,NGram), indicatesLabel(NGram,Y).

matches(NGram,Name) :-
containsWord(NGram,Word), containsWord(Name,Word), important(Word).



Experiment: Relational Learning Benchmarks

Theories all learned using ISG (Wang et al, CIKM 2014) and 
then fixed



Experiment: Scalability of Inference

shallow inference task deeply recursive inference task



Experiment: Scalability of Inference

cell_2_3 

edge(cell_2_3, cell_2_4)  0.2
...

cell_2_4 

path(X,Y) :- edge(X,Y)
path(X,Z) :- edge(X,Z),path(Z,Y)



Experiment: Scalability of Inference

shallow
 

recursive 

● Queries per second: machine with one GPU
○ eg on query -? path(cell_2_4,Y)

● bold is best TensorLog performer - ProPPR italicized if it “wins”



Experiment: Scalability of Inference

shallow
 

recursive 

● Queries per second: machine with one GPU
● bold/italics is best performer
● b=25 means that 25 queries are done in parallel (as a “minibatch”)
● minibatch paralellization gives large - up to 10x - speedup on one core



Experiment: Scalability of Inference

shallow
 

recursive 

● Queries per second: machine with one GPU
● bold/italics is best performer
● b=25 means that 25 queries are done in parallel (as a “minibatch”)
● Compared TensorFlow and homegrown sparse matrix backends ...



Experiment: Scalability of Inference

shallow
 

recursive 

● Queries per second: machine with one GPU (Titan X, 12Gb)
● bold/italics is best performer
● b=25 means that 25 queries are done in parallel (as a “minibatch”)
● Tested TensorFlow and hand-constructed sparse matrix backends
● Tested TensorFlow with GPU: only 1.5-2x faster for inference and 

then only on deeper models



Experiment: Scalability of Learning

● Task: learn grid transition weights so that transitive closure operations 
perform a particular navigational goal
○ Go from cell to closest “landmark” cell, like (10,10) or (30,50)

● Minibatch size of 25
● A 25 by 25 grid
● Learning is much faster with TensorFlow and with GPUs

○ Architected for learning/repeated passes over data with same 
code



Experiment: Robustness of Learning

● Tune parameters on 16x16 grid task
● Run same parameters on larger grids (deeper inference, different 

architecture networks)
● Compare homegrown gradient descent and well-tuned Adagrad 

(Tensorflow implementation)

Adagrad is more robust and faster



Tensorlog: 
Extensions



Experiment: Learning Other Semantics

Inference is now via a numeric function:   y = g
io

uncle(u
a
) 

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(softmax(g(x)),y*)

softmax normalizes the proof counts y
so you learn a conditional distribution P(y|x)
● i.e. sum of y’s will be 1.0
● can rank people by confidence in being 

“Bob’s uncle” but can’t tell how many 
uncles Bob has

(but it’s 
great to 
optimize!)



Key point: flexibility is free

Inference is now via a numeric function:   y = g
io

uncle(u
a
) 

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(sigmoid(g(x) + b), y*)

Alternative: convert weighted proofcounts to an arbitrary 
distribution - e.g. with a biased sigmoid - and assess loss 
relative to that.  Loss function changes, learning still “free”.

Then you can learn to match an arbitrary target distribution.

Adding logistic
regression
“on top” of 
TensorLog



Example: alternative semantics

Recall proof-counting was compared to model-counting systems 
(eg ProbLog2) where conceptually

• There is a distribution Pr(KG) over KGs
– Tuple-independence: draw a KG by picking each fact f with 

probability w
f
 

• The probability of a fact f’ is the probability T+KG’ implies f’, for 
a KG’ is drawn from Pr(KG) 

Experiments: for grid world, estimate Pr(path(a,b)) using a sample 
of 1M random KG/grids drawn from the tuple-independence 
model



Experiment: Learning Alternate Semantics

Experiment: learn 
grid-transition weights to 
approximate ProbLog2’s 
inference weights.  

Error drops by factor of 10x.



Experiment: Learning Alternate Semantics

Experiment: learn 
grid-transition weights to 
approximate ProbLog2’s 
inference weights.  

Error drops by factor of 10x.



Experiment: Learning Representations

cell_2_3 

edge(cell_2_3, cell_2_4)  0.2
...

cell_2_4 

path(X,Y) :- edge(X,Y)
path(X,Z) :- edge(X,Z),path(Z,Y)

Replace learnable 
weight 0.2 with a 
function of learned 
representations of 
cell_2_3 and 
cell_2_4.

Each cell i has a 
learned vector 
representation ei



Experiment: Learning Representations

Experiment: learn a neural model for grid-transition weights.  

edge(cell1, cell2)  =  
log(1 + exp(sum_d (e1[d] - e2 [d]))   * M[cell1,cell2]

Manhattan distance in 
embedding space, but 
directional: want 
weights to encourage 
transitions toward the 
target cell.

0,1 mask so only grid 
edges are consideredAveraged over 10 trials, 10x10 

grid, 100 epochs.

● Accuracy 97.8%
● Accuracy of baseline: 85.8%

(one weight per edge)

makes edge score positive



Tensorlog: 
Extension (Neural ILP)

Fang Yang, Zhilin Yang



Learning rules for TensorLog

• Basic idea:
– TensorLog programs are compiled 

to a sequence of differentiable 
operators

– Each operator is applied to a 
memory location ~= logical variable

• Learn sequence with a neural 
controller

Given only examples:
• uncle(liam,Y): Y should be {“bob”}
• aunt(liam,Y):Y should be {“mary, “sue”}
• …
Learn full model (parameters and rules)



Learning rules for TensorLog
LSTM controller: reads p,a at each 
time step in computing Y : p(a,Y)

New memory  cell allocated at 
each time step: contents are 
formed by attention over ops and 
previous memory cells

Final output is 
attention over 
memory cells 
after T steps Current status:

chain rules only,
hard KB





Results for Neural Inductive Logic 
Programming



Recovering rules for Neural ILP



Results for Neural Inductive Logic 
Programming

Synthetic task: learning specific long paths in grid, like “NE-NE-S-S”



Where to next?
William Cohen 

Google AI



TensorLog model

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

starred_actors Wise Guys Harvey Keitel
starred_actors Wise Guys Danny DeVito
starred_actors Wise Guys Joe Piscopo
starred_actors Wise Guys Ray Sharkey
directed_by Wise Guys Brian De Palma
has_genre Wise Guys Comedy
release_year Wise Guys 1986
…
written_by How to .. Killer Luke Ricci
has_genre How to .. Killer Comedy
...

answer(Question, Entity) :-
  mentions_entity(Question,Movie),  
  starred_actors(Movie,Entity),
   feature(Question,F),weight_sa_io(F).
  % w_sa_f: weight for  starred_actors(i,o)
...
answer(Question, Movie) :-
  mentions_entity(Question,Entity),
  written_by(Movie,Entity),  
  feature(Question,F),weight_wb_oi(F).
...
Total: 18 rules



TensorLog model

answer(Question, Entity) :-
  mentions_entity(Question,Movie),  
  starred_actors(Movie,Entity),
   feature(Question,F),weight_sa_io(F).
  % w_sa_f: weight for  starred_actors(i,o)
...
answer(Question, Movie) :-
  mentions_entity(Question,Entity),
  written_by(Movie,Entity),  
  feature(Question,F),weight_wb_oi(F).
...

Is this the best interface to give Google 
programmers to build models? 
Problems:

● Hard to predict what will happen in 
the compiled model (what does the 
BP stage do to construct a model?)

● Hard to quantify over relations (do 
second order reasoning)

● Awkward to swap back and forth 
between TensorFlow and TensorLog 
(declarative vs functional)

Proposal: language for compilation 
target for Tensorlog



Neural Query Language: 1st-order

answer(Question, Entity) :-
  mentions_entity(Question,Movie),  
  starred_actors(Movie,Entity),
  feature(Question,F),
  indicates(F,’starred_actors’).
...
answer(Question, Movie) :-
  mentions_entity(Question,Entity),
  written_by(Movie,Entity),  
  feature(Question,F),
  indicates(F,’written_by’)
...

answer =
   question.mentions_entity().starred_actors().if_exists(
             question.feature() & nq.one(‘starred_actors’).indicates(-1))
  | question.mentions_entity().directed_by().if_exists(
             question.feature() & nq.one(‘directed_by’).indicates(-1))
  | 
 ….

“features that indicate the 
‘starred_actors’ KG relation”

“features that indicate the 
‘directed_by’ KG relation”

x.if_exists(y): return vector x 
multiplied by sum of weights in y 
… a soft version of return x iff y is 
non-empty else empty set

-1: go “backwards”
        mode oi



Neural Query Language: 1st-order
answer =
   question.mentions_entity().starred_actors(+1).if_exists(
             question.feature() & nq.one(‘starred_actors’).indicates_rel(-1)).if_exists(
                    question.feature() & nq.one(‘forward’).indicates_dir(-1)))
  | question.mentions_entity().starred_actors(-1).if_exists(
             question.feature() & nq.one(‘starred_actors’).indicates_rel(-1)).if_exists(
                    question.feature() & nq.one(‘backward’).indicates_dir(-1)))

 ….
answer(Question, Entity) :-
  mentions_entity(Question,Movie),  
  starred_actors(Movie,Entity),
  feature(Question,F),
  indicates_rel(F,’starred_actors’),
  indicates_dir(F,’forward’).
...



NQL: semantics in Tensorflow

variable/expression output x a vector encoding a weighted set (localist representation)

nq.one(‘bob’,’person’)
x.jump_to(‘bob’,’person’)

v_bob, one hot vector for entity ‘bob’

nq.all(‘person’)
x.jump_to_all(‘person’)

k-hot vector for set off all elements of type ‘person’
  i.e. a ones vector

nq.none(‘person’)
x.jump_to_none(‘person’)

k-hot vector for empty set of elements of type ‘person’
  i.e. a zeros vector

x.r()
x.follow(‘r’)

x.dot(M_r)
  where M_r is sparse matrix for r and x a k-hot vector

x | y 
x + y

x + y

x & y
x * y

x * y 
   Hadamard aka component-wise product

x.filtered_by(‘r’,’bob’)
x.weighted_by(‘r’,’bob’)

x * v_bob.dot(M_r’)
    M_r’ is transpose

x.if_exists(y)
x.weighted_by_sum(y)

x *  y.sum()



Neural Query Language: 2nd-order

def kg_relation(question):  
  return question.features().feat2rel()  % classify relation

def answer(question):
  return question.mentions_entity().follow(kg_relation(question))

       verb(t37,starred_in)
starred_in(tom_hanks,the_post) →  subject(t37,tom_hanks) 

object(t37,the_post)

x.follow(g) ==  (x.subject(-1)  &  g.verb(-1)).object()

x={tom_hanks} g={starred_in}:   (tom_hanks is sub) & (starred_in is verb) → object



Conclusions and Wrap-Up
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Conclusions and Wrap-Up

How should logic and logic programming 
approaches to AI be integrated with “neural” / 
“deep” / GPU-based approaches to AI?



Conclusions and Wrap-Up
How should logic and logic programming approaches to AI be 
integrated with “neural” / “deep” / GPU-based approaches to AI?

TensorFlow tries to answer this in one way:

● Scalable - but restricted - declarative subset of Prolog
● Very efficient for learning and inference
● Combinable with neural methods:

○ Eg: Logistic regression model “on top” of proof 
counts (for tuple-independence)

○ Eg: Representation learning “underneath” (to 
define edge weights)


