
Deep Learning and Logic
...

William W Cohen
Google AI/Carnegie Mellon University

joint work with

Fan Yang, Zhilin Yang, Kathryn Rivard Mazaitis

Clean
understandable
elegant models

Complexity of
real-world

phenomena

⇒
complex models

⇒
lots of programming or data

Complexity of
real-world

phenomena

⇒
complex models

⇒
lots of programming or dataHow did we get here?

How did we get here?
2017: 45 Teraflops
(45,000 GFLOPS)

How did we get here?

run Hadoop, Spark, ...

run a big pile of linear algebra

Clean
understandable
elegant models complex models

Deep Learning and Logic:

Learnable Probabilistic Logics
That Run On GPUs

Tensorlog:
Key ideas and background

Probabilistic Deductive DBs

Horn clauses (rules)

ground unit clauses
(facts) weight for each fact

Probabilistic Deductive DBs

We use this trick to
weight rules

special fact only
appearing in this rule

weighted(r3) 0.98

 status(X,tired) :- child(W,X), infant(W), weighted(r3).

special fact only
appearing in this rule

Probabilistic Deductive KGs
(Knowledge Graphs)

Assumptions:
● (Only parameters are weights for facts)
● Predicates are unary or binary
● Rules have no function symbols or constants

Neural implementations of logic

KBANN idea (1991): convert every DB fact, and
every possible inferable fact, to a neuron.

Similar “grounding strategies” are used by many
other soft logics: Markov Logic Networks,
Probabilistic Soft Logic, …

A neuron for every possible inferable fact is “too
many” --- i.e., bigger than the DB.

Reasoning in PrDDBs/PrDKGs

uncle(liam,chip)

brother(eve,chip) child(liam,eve)

child(liam,bob)

uncle(liam,eve)

σ(….)

DB facts

possible inferences
(Herbrand base)

uncle(liam,dave)

σ(….)σ(….)

usual approach: “grounding” the rules

Reasoning in PrDDBs/PrDKGs
explicit grounding does not scale!

Example: inferring family relations like “uncle”
• N people
• N2 possible “uncle” inferences

• N = 2 billion ➔ N2 = 4 quintillion
• N = 1 million ➔ N2 = 1 trillion

A KB with 1M entities is small

Reasoning in TensorLog

• TensorLog uses a knowledge-graph specific trick to get
scalability:

– “reasoning” means answering a query like: find all Y for
which p(a,Y) is true for some given predicate p;query
entity a; and theory T and KG)

– inferences for a logical theory can be encoded as a bunch
of functions: for every p, a, a vector a encodes a, and the
function f

p
(a) returns a vector encoding answers y (and

confidences)

–
– actually we have functions for p(a,Y) and p(Y,a)…. called

f
p:io

(a) and f
p:oi

(a)

Reasoning in TensorLog

Example: inferring family relations like “uncle”
• N people
• N2 possible “uncle” facts
• N = 1 million ➔ N2 = 1 trillion

f
1
(x) = Y f

2
(x) = Y

one-hot vectors
(0,0,0,1,0,0,0)

vectors encoding
weighted set of DB instances

x is the nephew x is the uncle

(0,0,0.81,0,0,0.93,0,0,0)

The vectors are
size O(N) not
O(N2)

Reasoning in TensorLog

• TensorLog uses a knowledge-graph specific
trick…functions from sets of entities to sets of
entities

• Key idea: You can describe the reasoning
process as a factor graph

• Example: Let’s start with some example
one-rule theories

Reasoning via message-passing: example

X parent W brother Y

uncle(X,Y):-parent(X,W),brother(W,Y)

Query: uncle(liam, Y) ?

 [liam=1] [eve=0.99,
bob=0.75]

[chip=0.99*0.9]

• Algorithm: build a factor
graph with one random
variable for each logical
variable, encoding a
distribution over DB
constants, and one factor for
each logical literal.

• Belief propagation on factor
graph enforces the logical
constraints of a proof, and
gives a weighted count of
number of proofs supporting
each answer

…

output msg for brother is sparse
mat multiply: v

W
 M

brother

Reasoning via message-passing: subpredicates

X aunt W spouse Y

uncle(X,Y):-aunt(X,W),spouse(W,Y)
aunt(X,Y):-parent(X,W),sister(W,Y)

Query: uncle(liam, Y) ?

…

X’ parent W’ sister Y’

• Recursive predicate calls can
be expanded in place in the
factor graph

• Stop at a fixed maximum
depth (and return count of
zero proofs)

Reasoning via message-passing: subpredicates

X aunt W spouse Y

uncle(X,Y):-aunt(X,W),spouse(W,Y)
aunt(X,Y):-parent(X,W),sister(W,Y)

Query: uncle(liam, Y) ?

X’ parent W’ sister Y’

• Recursive
predicate calls can
be expanded in
place in the factor
graph

• Multiple clauses
for the same
predicate: add the
proof counts for
each clauseX’’ uncle W’ spouse Y’’

sum

Reasoning via message-passing: key ideas

X child W brother Y

uncle(X,Y):-child(X,W),brother(W,Y)

Query: uncle(liam, Y) ?

General case for p(c,Y):
• initialize the evidence variable X

to a one-hot vector for c
• wait for BP to converge
• read off the message y that

would be sent from the output
variable Y.

• un-normalized probability
• y[d] is the weighted number of

proofs supporting p(c,d)

Reasoning via message-passing: key ideas

Special case:
• If all clauses are polytrees (~= every free variable has one path of

dependences linking it to a bound variable) then BP converges in linear
time and will result in a fixed sequence of messages being passed

• Only a few linear algebra operators are used in these messages:
• vector-matrix multiplication
• Hadamard product
• multiply v1 by L1 norm of v2
• vector sum
• (normalization)

The result of this message-passing sequence
produced by BP is just a function:

the function f
p:io

(a) we were trying to construct!

Note on Semantics

The semantics are proof-counting, not model-counting:
conceptually

• For each answer a to query Q, find all derivations d
a
 that

prove a
• The weight of each d

a
 is product of weight w

f
 of each KG fact

f used in that derivation
• The weight of a is the sum of the weights of all derivations

This is an unnormalized stochastic logic program (SLP) - Cussens
and Muggleton, with weights computed efficiently (for this
special case) by dynamic programming (even with exponentially
many derivations)

Note on Semantics

Compare to model-counting where conceptually

• There is a distribution Pr(KG) over KGs
– Tuple-independence: draw a KG by picking each fact f

with probability w
f

• The probability of a fact f’ is the probability T+KG’ implies f’,
for a KG’ is drawn from Pr(KG)

E.g.: ProbLog, Fuhr’s Probabilistic Datalog (PD), ...

Tensorlog:
Learning Algorithms

Learning in TensorLog

Inference is now via a numeric function: y = g
io

uncle(u
a
)

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(softmax(g(x)),y*)

Minimize the loss with gradient-descent, ….
● To adjust weights for selected DB relations, e.g.: dloss/dM

brother

Key point: Learning is “free” in TensorLog

Inference is now via a numeric function: y = g
io

uncle(u
a
)

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(softmax(g(x)),y*)

Minimize the loss with gradient-descent, ...
● To adjust weights for selected DB relations, e.g.: dloss/dM

brother

● Homegrown implementation: SciPy implementation of
operations, derivatives, and gradient descent optimization

● Compilation to TensorFlow expressions ⇒ TF derivatives,
optimizers, ...

Tensorlog:
Experimental Results

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

starred_actors Wise Guys Harvey Keitel
starred_actors Wise Guys Danny DeVito
starred_actors Wise Guys Joe Piscopo
starred_actors Wise Guys Ray Sharkey
directed_by Wise Guys Brian De Palma
has_genre Wise Guys Comedy
release_year Wise Guys 1986
...

Data: from Miller, Fisch, Dodge, Karami,
Bordes, Weston “Key-Value Memory
Networks for Directly Reading Documents”

● Questions: 96k train, 20k dev, 10k test
Knowledge graph: 421k triples about
16k movies, 10 relations

● Subgraph/question embedding:
○ 93.5%

● Key-value memory network:
○ 93.9% “reading” the KG
○ 76.2% by reading text of articles

Experiment: factual Q/A from a KB
WikiMovies dataset

TensorLog model

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

starred_actors Wise Guys Harvey Keitel
starred_actors Wise Guys Danny DeVito
starred_actors Wise Guys Joe Piscopo
starred_actors Wise Guys Ray Sharkey
directed_by Wise Guys Brian De Palma
has_genre Wise Guys Comedy
release_year Wise Guys 1986
…
written_by How to .. Killer Luke Ricci
has_genre How to .. Killer Comedy
...

answer(Question, Entity) :-
 mentions_entity(Question,Movie),
 starred_actors(Movie,Entity),
 feature(Question,F),weight_sa_io(F).
 % w_sa_f: weight for starred_actors(i,o)
...
answer(Question, Movie) :-
 mentions_entity(Question,Entity),
 written_by(Movie,Entity),
 feature(Question,F),weight_wb_oi(F).
...
Total: 18 rules

relations in DB = 9

TensorLog model

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

answer(Question, Entity) :-
 mentions_entity(Question,Movie),
 starred_actors(Movie,Entity),
 feature(Question,F),weight_sa_io(F).
 % w_sa_f: weight for starred_actors(i,o)
...
answer(Question, Movie) :-
 mentions_entity(Question,Entity),
 written_by(Movie,Entity),
 feature(Question,F),weight_wb_oi(F).
...
Total: 18 rules

k = # relations in DB = 9

These weights are a
linear classifier that
says which rule to use
to answer which
question

Experiment: Factual Q/A with a KB

• KG is about 420k movie facts + 850k facts about the
questions (mentions_entity/2, features/2)

Joint entity-linking and QA
proposed extension

answer(Question,Answer) :-
classification(Question,aboutActedIn),
mentionsEntity(Question,Entity), actedIn(Answer,Entity).

answer(Question,Answer) :-
classification(Question,aboutDirected),
mentionsEntity(Question,Entity), directed(Answer,Entity).

answer(Question,Answer) :-
classification(Question,aboutProduced),
mentionsEntity(Question,Entity), produced(Answer,Entity).

...
mentionsEntity(Question,Entity) :-

containsNGram(Question,NGram), matches(NGram,Name),
possibleName(Entity,Name), popular(Entity).

classification(Question,Y) :-
containsNGram(Question,NGram), indicatesLabel(NGram,Y).

matches(NGram,Name) :-
containsWord(NGram,Word), containsWord(Name,Word), important(Word).

Experiment: Relational Learning Benchmarks

Theories all learned using ISG (Wang et al, CIKM 2014) and
then fixed

Experiment: Scalability of Inference

shallow inference task deeply recursive inference task

Experiment: Scalability of Inference

cell_2_3

edge(cell_2_3, cell_2_4) 0.2
...

cell_2_4

path(X,Y) :- edge(X,Y)
path(X,Z) :- edge(X,Z),path(Z,Y)

Experiment: Scalability of Inference

shallow

recursive

● Queries per second: machine with one GPU
○ eg on query -? path(cell_2_4,Y)

● bold is best TensorLog performer - ProPPR italicized if it “wins”

Experiment: Scalability of Inference

shallow

recursive

● Queries per second: machine with one GPU
● bold/italics is best performer
● b=25 means that 25 queries are done in parallel (as a “minibatch”)
● minibatch paralellization gives large - up to 10x - speedup on one core

Experiment: Scalability of Inference

shallow

recursive

● Queries per second: machine with one GPU
● bold/italics is best performer
● b=25 means that 25 queries are done in parallel (as a “minibatch”)
● Compared TensorFlow and homegrown sparse matrix backends ...

Experiment: Scalability of Inference

shallow

recursive

● Queries per second: machine with one GPU (Titan X, 12Gb)
● bold/italics is best performer
● b=25 means that 25 queries are done in parallel (as a “minibatch”)
● Tested TensorFlow and hand-constructed sparse matrix backends
● Tested TensorFlow with GPU: only 1.5-2x faster for inference and

then only on deeper models

Experiment: Scalability of Learning

● Task: learn grid transition weights so that transitive closure operations
perform a particular navigational goal
○ Go from cell to closest “landmark” cell, like (10,10) or (30,50)

● Minibatch size of 25
● A 25 by 25 grid
● Learning is much faster with TensorFlow and with GPUs

○ Architected for learning/repeated passes over data with same
code

Experiment: Robustness of Learning

● Tune parameters on 16x16 grid task
● Run same parameters on larger grids (deeper inference, different

architecture networks)
● Compare homegrown gradient descent and well-tuned Adagrad

(Tensorflow implementation)

Adagrad is more robust and faster

Tensorlog:
Extensions

Experiment: Learning Other Semantics

Inference is now via a numeric function: y = g
io

uncle(u
a
)

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(softmax(g(x)),y*)

softmax normalizes the proof counts y
so you learn a conditional distribution P(y|x)
● i.e. sum of y’s will be 1.0
● can rank people by confidence in being

“Bob’s uncle” but can’t tell how many
uncles Bob has

(but it’s
great to
optimize!)

Key point: flexibility is free

Inference is now via a numeric function: y = g
io

uncle(u
a
)

y encodes {b:uncle(a,b)} is true and y[b]=confidence in uncle(a,b)

Define loss function relative to target proof-count values y* for x, eg

loss(g
io

uncle(u
a
), y*) = crossEntropy(sigmoid(g(x) + b), y*)

Alternative: convert weighted proofcounts to an arbitrary
distribution - e.g. with a biased sigmoid - and assess loss
relative to that. Loss function changes, learning still “free”.

Then you can learn to match an arbitrary target distribution.

Adding logistic
regression
“on top” of
TensorLog

Example: alternative semantics

Recall proof-counting was compared to model-counting systems
(eg ProbLog2) where conceptually

• There is a distribution Pr(KG) over KGs
– Tuple-independence: draw a KG by picking each fact f with

probability w
f

• The probability of a fact f’ is the probability T+KG’ implies f’, for
a KG’ is drawn from Pr(KG)

Experiments: for grid world, estimate Pr(path(a,b)) using a sample
of 1M random KG/grids drawn from the tuple-independence
model

Experiment: Learning Alternate Semantics

Experiment: learn
grid-transition weights to
approximate ProbLog2’s
inference weights.

Error drops by factor of 10x.

Experiment: Learning Alternate Semantics

Experiment: learn
grid-transition weights to
approximate ProbLog2’s
inference weights.

Error drops by factor of 10x.

Experiment: Learning Representations

cell_2_3

edge(cell_2_3, cell_2_4) 0.2
...

cell_2_4

path(X,Y) :- edge(X,Y)
path(X,Z) :- edge(X,Z),path(Z,Y)

Replace learnable
weight 0.2 with a
function of learned
representations of
cell_2_3 and
cell_2_4.

Each cell i has a
learned vector
representation ei

Experiment: Learning Representations

Experiment: learn a neural model for grid-transition weights.

edge(cell1, cell2) =
log(1 + exp(sum_d (e1[d] - e2 [d])) * M[cell1,cell2]

Manhattan distance in
embedding space, but
directional: want
weights to encourage
transitions toward the
target cell.

0,1 mask so only grid
edges are consideredAveraged over 10 trials, 10x10

grid, 100 epochs.

● Accuracy 97.8%
● Accuracy of baseline: 85.8%

(one weight per edge)

makes edge score positive

Tensorlog:
Extension (Neural ILP)

Fang Yang, Zhilin Yang

Learning rules for TensorLog

• Basic idea:
– TensorLog programs are compiled

to a sequence of differentiable
operators

– Each operator is applied to a
memory location ~= logical variable

• Learn sequence with a neural
controller

Given only examples:
• uncle(liam,Y): Y should be {“bob”}
• aunt(liam,Y):Y should be {“mary, “sue”}
• …
Learn full model (parameters and rules)

Learning rules for TensorLog
LSTM controller: reads p,a at each
time step in computing Y : p(a,Y)

New memory cell allocated at
each time step: contents are
formed by attention over ops and
previous memory cells

Final output is
attention over
memory cells
after T steps Current status:

chain rules only,
hard KB

Results for Neural Inductive Logic
Programming

Recovering rules for Neural ILP

Results for Neural Inductive Logic
Programming

Synthetic task: learning specific long paths in grid, like “NE-NE-S-S”

Where to next?
William Cohen

Google AI

TensorLog model

who acted in the movie Wise Guys? ['Harvey Keitel', 'Danny DeVito', 'Joe Piscopo', …]
what is a film written by Luke Ricci? ['How to Be a Serial Killer']
…

starred_actors Wise Guys Harvey Keitel
starred_actors Wise Guys Danny DeVito
starred_actors Wise Guys Joe Piscopo
starred_actors Wise Guys Ray Sharkey
directed_by Wise Guys Brian De Palma
has_genre Wise Guys Comedy
release_year Wise Guys 1986
…
written_by How to .. Killer Luke Ricci
has_genre How to .. Killer Comedy
...

answer(Question, Entity) :-
 mentions_entity(Question,Movie),
 starred_actors(Movie,Entity),
 feature(Question,F),weight_sa_io(F).
 % w_sa_f: weight for starred_actors(i,o)
...
answer(Question, Movie) :-
 mentions_entity(Question,Entity),
 written_by(Movie,Entity),
 feature(Question,F),weight_wb_oi(F).
...
Total: 18 rules

TensorLog model

answer(Question, Entity) :-
 mentions_entity(Question,Movie),
 starred_actors(Movie,Entity),
 feature(Question,F),weight_sa_io(F).
 % w_sa_f: weight for starred_actors(i,o)
...
answer(Question, Movie) :-
 mentions_entity(Question,Entity),
 written_by(Movie,Entity),
 feature(Question,F),weight_wb_oi(F).
...

Is this the best interface to give Google
programmers to build models?
Problems:

● Hard to predict what will happen in
the compiled model (what does the
BP stage do to construct a model?)

● Hard to quantify over relations (do
second order reasoning)

● Awkward to swap back and forth
between TensorFlow and TensorLog
(declarative vs functional)

Proposal: language for compilation
target for Tensorlog

Neural Query Language: 1st-order

answer(Question, Entity) :-
 mentions_entity(Question,Movie),
 starred_actors(Movie,Entity),
 feature(Question,F),
 indicates(F,’starred_actors’).
...
answer(Question, Movie) :-
 mentions_entity(Question,Entity),
 written_by(Movie,Entity),
 feature(Question,F),
 indicates(F,’written_by’)
...

answer =
 question.mentions_entity().starred_actors().if_exists(
 question.feature() & nq.one(‘starred_actors’).indicates(-1))
 | question.mentions_entity().directed_by().if_exists(
 question.feature() & nq.one(‘directed_by’).indicates(-1))
 |
 ….

“features that indicate the
‘starred_actors’ KG relation”

“features that indicate the
‘directed_by’ KG relation”

x.if_exists(y): return vector x
multiplied by sum of weights in y
… a soft version of return x iff y is
non-empty else empty set

-1: go “backwards”
 mode oi

Neural Query Language: 1st-order
answer =
 question.mentions_entity().starred_actors(+1).if_exists(
 question.feature() & nq.one(‘starred_actors’).indicates_rel(-1)).if_exists(
 question.feature() & nq.one(‘forward’).indicates_dir(-1)))
 | question.mentions_entity().starred_actors(-1).if_exists(
 question.feature() & nq.one(‘starred_actors’).indicates_rel(-1)).if_exists(
 question.feature() & nq.one(‘backward’).indicates_dir(-1)))

 ….
answer(Question, Entity) :-
 mentions_entity(Question,Movie),
 starred_actors(Movie,Entity),
 feature(Question,F),
 indicates_rel(F,’starred_actors’),
 indicates_dir(F,’forward’).
...

NQL: semantics in Tensorflow

variable/expression output x a vector encoding a weighted set (localist representation)

nq.one(‘bob’,’person’)
x.jump_to(‘bob’,’person’)

v_bob, one hot vector for entity ‘bob’

nq.all(‘person’)
x.jump_to_all(‘person’)

k-hot vector for set off all elements of type ‘person’
 i.e. a ones vector

nq.none(‘person’)
x.jump_to_none(‘person’)

k-hot vector for empty set of elements of type ‘person’
 i.e. a zeros vector

x.r()
x.follow(‘r’)

x.dot(M_r)
 where M_r is sparse matrix for r and x a k-hot vector

x | y
x + y

x + y

x & y
x * y

x * y
 Hadamard aka component-wise product

x.filtered_by(‘r’,’bob’)
x.weighted_by(‘r’,’bob’)

x * v_bob.dot(M_r’)
 M_r’ is transpose

x.if_exists(y)
x.weighted_by_sum(y)

x * y.sum()

Neural Query Language: 2nd-order

def kg_relation(question):
 return question.features().feat2rel() % classify relation

def answer(question):
 return question.mentions_entity().follow(kg_relation(question))

 verb(t37,starred_in)
starred_in(tom_hanks,the_post) → subject(t37,tom_hanks)

object(t37,the_post)

x.follow(g) == (x.subject(-1) & g.verb(-1)).object()

x={tom_hanks} g={starred_in}: (tom_hanks is sub) & (starred_in is verb) → object

Conclusions and Wrap-Up

Conclusions and Wrap-Up

Conclusions and Wrap-Up

How should logic and logic programming
approaches to AI be integrated with “neural” /
“deep” / GPU-based approaches to AI?

Conclusions and Wrap-Up
How should logic and logic programming approaches to AI be
integrated with “neural” / “deep” / GPU-based approaches to AI?

TensorFlow tries to answer this in one way:

● Scalable - but restricted - declarative subset of Prolog
● Very efficient for learning and inference
● Combinable with neural methods:

○ Eg: Logistic regression model “on top” of proof
counts (for tuple-independence)

○ Eg: Representation learning “underneath” (to
define edge weights)

